
N o v e m b e r / D e c e m b e r 2 0 0 1 21

I
n a real-time embedded control system,
such as an aircraft flight-control, an
operating room device, or a power plant

command and control center, the ease-of-
use of the user-interface becomes critical to
determining their commercial success. A
well-designed user-interface accepts operator
instructions without requiring excessive
manipulation of the user-interface. A well-
designed user-interface also presents the
operator with information to aid decision-
making.

This article demonstrates how rule-
based expert system models of control
system behavior aid the designers in
building superior user-interfaces.

Complex User-interfaces Increase
Operator’s Cognitive Workload

Complex control automation pervades
our lives with appliances ranging from the
personal (e.g. digital watch) to the most
complex (e.g. aircraft flight control system).
These systems, constructed using digital
microprocessors, perform increasingly more
complicated tasks. To match this growth in
complexity, the functionality of their user-
interfaces must increase. Figure 1 illustrates
the primary user-interface for pilot
interaction with the flight control system on
the Boeing 747 aircraft. There are four
knobs for setting targets (shown in the
windows) and 13 buttons. Some buttons
affect the aircrafts ability to meet the
objective (white connecting lines) while
others do not.

Although the introduction of complex
control automation has generally decreased
the operator’s physical motions, studies show

that the operator’s cognitive workload often
increases. Instead of controlling the vehicle
or plant directly through physical action,
operators of these control systems supervise
sophisticated suites of automation,
performing memorized action sequence to
“program” the automation in advance and
then monitor its behavior.

Researchers, studying operators of these
systems have found that during high tempo
(e.g. abnormal and emergency) situations, in
which the operator’s cognition is already
taxed to it’s maximum levels, the additional

burden of programming a complex user-
interface may exceed the limits of human
performance (Figure 2).

Don’t Make Me Think About the
User-Interface

Designers recognize that the traditional
approach of designing control systems to
automate the tasks formerly performed by
the operator turns operators into system
monitors. Monitoring, over an extended
period, is something at which humans
inherently perform poorly.

Figure 1: User-interface for Boeing 747 flight control system.

Figure 2: Cognitive workload increases above the limits of human performance
while operating complex user-interfaces during abnormal or emergency situations.

Designing
User-interfaces
Using Rule-
based Expert
System Models
of the
Automation

Rule-based
expert system
models, as
described in this
article, have
emerged as a
powerful tool for
designing easy-to-
use user-interfaces
for complex
control systems.
These models
supply an analytic
technique to
ensure that input

devices meet operator’s goals and that
feedback displays annunciate the automated
behavior.

Example Automation
Figure 3 illustrates an example

automation device with one input device
invoking the behaviors commanded by the
automation. The system also exhibits a
feedback display that annunciates or
illustrates the behavior commanded by the
automation. The system has two inputs
(speed, distance) and one actuator
command (output). The flowchart
represents the real-time software algorithm.

A rule-based model of the automation
is included in Table 1. The left hand-side of
the table defines the combinations of the
input conditions, including input device
selection by the operator. The table’s right
hand-side defines the combinations of
functions used to generate values on the
output commands. The right hand-side also
includes the content of the feedback display.

22 P C A I

Instead of automating tasks normally
performed by the operator, designers are
now building automation that aids the
operator in performing their task by
providing information on the future
trajectory of the vehicle or plant parameters,
and by offering mode options and optimum
settings for control. By design, these systems
make the operator smarter, instead of simply
building smarter and more complex
automation.

There are two fundamental design
principles for building automation that
makes the operator smarter3:

Provide input devices for each of the
operator’s task goals: The user-interface
allows the operator to issue commands to
the automation that directly reflect the
operator’s task goals. It does not force the
operator to manipulate input devices in long
sequences of steps to achieve a task goal.

Provide feedback display devices that
acknowledge operator’s inputs and visualize
the effects of these inputs: The user-
interface acknowledges receipt of the
operator’s inputs and presents pertinent
information enabling visualization of the
instructions short-term and long-term
effects. In many cases, the user-interface also
presents the operator with additional
information such as safe operating regions
and optimal settings.

Indications that these characteristics
have been satisfied include: (1) a very small
user manual, and (2) operators consistently
using the automation in abnormal or
emergency situations. The user-interface
allows the operator to concentrate on
controlling the vehicle or plant (and not
manipulating the user-interface).

Each row defines a unique
combination of input conditions and
associated output commands and display.
The middle column numbers each rule and
describes the automation behavior.

Rule 1 — an input (speed) exceeds a
safe threshold. The automation protects the
vehicle-under-control by commanding a
return to a safe operating region.

Rules 2 and 3 — the pilot selects the
input device to instruct the automation to
perform a specific maneuver. Rule 2 handles
pushing the button in normal condition.
Rule 3 handles pushing it in an abnormal
condition.

Rule 4 — an automatic maneuver
performed by the automation as an
intended consequence of the user selecting
the button. This condition occurs
automatically following Rule 2 activation.

Rule 5 — the default idle condition
(e.g. on power-up).

User-interface Design Using the
Rule-based Model

A significant amount of information on
the utility of the automation user-interface is
available from the rule-based expert system
model used in the design of practical user-
interfaces.

Design Principle 1: Automation should
support all the operator’s task goals.

The automation should be designed to
perform each of the goals required by the
operator’s task. The rule-based model
defines a complete list of behaviors
performed by the automation (middle
column) and can be used to ensure that all
the operator’s task goals are supported. As
simple as this design rules appears, one does
not need to look far for automation
examples requiring significant manipulation
of the user-interface to achieve operator’s
goals. For example, the cordless telephone
that requires the removal and re-insertion of
the power chord after a power interruption

Speed > Max

Output 1 = -f1(t)
Output 2 = On

Display = Brake

Button Push AND
Dist > Capture Dist

Output 1 = f1(t)
Output 2 = Off

Display = Power

Output 1 = -f1(t)
Output 2 = Off

Display = Brake
XXX

++++

Distance

Outputs
1 & 2

Button Push AND
Dist < Capture Dist

Output 1 = 0
Output 2 = Off

Display = No Power

Previous Rule 2

Output 1 = 0
Output 2 = Off

Display = No Power

Display

Button

Figure 3: Determine example automation Behavior by the
functions generating values on the outputs. Determine these
functions by the combination of input conditions (including
input device selection by the operator).

Input Conditions Rule Number Output
Command

Output
Command

Display

Speed Distance Button Past
Rule

(Behavior Description) Motor Brake

Unsafe
region

1
(Brake Protect Vehicle*)

- f1(t) On Brake

Safe
region

>Capture
Region

Push 2
(Hold Speed to Target)

f1(t) Off Power

Safe
region

<Capture
Region

Push 3
(Brake to Capture Target)

- f1(t) Off Brake

Safe
region

<Capture
Region

2 4
(Decel to Capture Target)

0 Off No Power

Safe
region

No action 5
(Default on power-up)

0 Off No Power

 * Abnormal or emergency situation
Table 1: Rule-based model of the automation behavior. The rows on the left hand-
side define the possible combinations of the input conditions. The rows on the
right hand-side define the combinations of output commands and displays for
each combination of input conditions.

N o v e m b e r / D e c e m b e r 2 0 0 1 23

does not provide the operator the means to
“reset” the automation (as do PC’s with Alt-
Cntl-Delete).

Design Principle 2: Automation should
respond to all possible combinations of input
conditions.

Notice that the rule-based model
defines rules for all possible combinations of
input conditions. Combinations not in the
model identify situations in which the
automation will not respond. Missing
situations are common in very large
embedded control systems with coupled
components developed by different design
teams.

Design Principle 3: Automation should
respond in one way for each combination of
input conditions.

In a similar vein, combinations of input
conditions that appear more than once in
the model identify more than one behavior
assigned in response to a situation.
Duplicate input combinations, common in
very large embedded control systems with
coupled components developed by different
design teams, must be resolved.

Design Principle 4: Design automation
to present the operator with clearly labeled
input devices for each task goal.

The rule-based model is also critical to
defining the input devices for each operator
task goal. The rule-based model, documents
the agreement between the operator and
designer of how the operator will invoke
specific commanded behavior.

Mislabeled or poorly labeled input
devices are an obvious source of confusion
to the operator. For example, the cell phone
that is turned on by hitting the button
labeled “NO.”

A well design user-interface allows the
operator to translate their task goals directly
into actions on the input devices. Failure to
label the input devices with operationally
meaningful labels that reflect the operator’s
goals is a significant contributor to the need
for training.

The behavior description (middle
column) in the rule-based model serves as an
excellent source of operationally meaningful
labels. For example, an aircraft pilot’s task
goal of hold an altitude could be reflected on
the user-interface by an input device labeled
hold (see Figure 1)

Design Principle 5: Automation input
devices should result in one, and only one
behavior.

The astute reader studying the example
rule-based model will notice two
combinations of input conditions that use
the same input device (rule 2, and rule 3).
The operator’s selection of this input device
commands one behavior for rule 2 and a

different behavior for rule 3 (See Table 2).
An input device that commands

different behaviors depending on the
situation is functionally overloaded. In most
cases, the behavior input device either has an
operationally meaningful or incorrect label.
This characteristic drives up training costs
and is a potential weak link in operation of
the automation. Despite training, an
operator may use the input device
inappropriately in the heat-of-the-moment.

Design Principle 6: Automation should
minimize automatic changes in behavior that
over-ride the operators instructions.

Rule 1 in the example automation
illustrates a behavior that is not the result of
an operator’s manipulation of an input
device. This behavior, commanded by the
automation, is invoked autonomously by
the automation when the input (speed)
value leaves the safe operating region.

This type of behavior, known as an
autonomous mode change, legitimately appear
in the rule-based model when the
automation is required to override the
operator’s instructions to preserve the safety
of the device. For example sudden failures in
equipment or rapid changes in the
environment that operators cannot detect
(e.g. windshear for an aircraft) demand
immediate response from the automation.

Studies of eye fixation of operators
demonstrate that operators frequently do
not notice these autonomous changes in
commanded behaviori. For this reason
autonomous-mode changes should be
avoided where possible. Alternatively, the
designer should consider an additional
alerting output device such as an aural
warning or a flashing display to capture the
operator’s attention. Keep the number of

autonomous changes (and alerts) small since
humans are very good at ignoring annoying
sounds and flashing displays when they
occur too frequently.

Design Principle 7: Automation should
minimize the automatic changes in behavior
over time that are implemented in the
automation to automate long-sequences of
commanded behaviors.

Another form of autonomous change
in commanded behavior occurs in the
example automation in Rule 4 (see Table 2).
This type of change in commanded
behavior automatically executes a sequence
of tasks that otherwise would be made by
the operator. They are invoked by the
operator through the selection of an input
device that engages a long sequences of
commanded behaviors over an extended
period.

These input devices are known as
mega-modes. There are several problems with
mega-modes. First, similar to autonomous
mode changes, operators frequently do not
notice subtle changes in control strategies.
Secondly, mega-modes turn operators into
monitors. They become complacent or
confused and “get behind” the automation.
In addition, as the environment evolves
rapidly, it is easy for the automation to
rapidly command behaviors that “paint the
operator into a corner” that even the
operator cannot escape.

Experience has taught us that it is
imperative for safety and efficient operations
to team the operator and the automation
and allow them to operate synchronously to
perform the task. When these mega-mode
autonomous changes appear in the rule-
based model, they should be scrutinized very
carefully and possibly eliminated.

Input Conditions Rule Number Output
Command

Output
Command

Display

Speed Distance Button Past
Rule

(Behavior Description) Motor Brake

Unsafe
region

1
(Brake Protect Vehicle*)

- f1(t) On Brake

Safe
region

>Capture
Region

Push 2
(Hold Speed to Target)

f1(t) Off Power

Safe
region

<Capture
Region

Push 3
(Brake to Capture Target)

- f1(t) Off Brake

Safe
region

<Capture
Region

2 4
(Decel to Capture Target)

0 Off No Power

Safe
region

No action 5
(Default on power-up)

0 Off No Power

 * Abnormal or emergency situation

1) Automation fulfills operator task goals

4) Automation has clearly labeled input devices for each
operator task goal

8) Automation feedback display devices reflect behaviors
 commanded by the automation

2) Automation responds to all
possible combinations of input
conditions

8) Automation feedback display device
content reflects commanded behavior

9) Content on
feedback
display devices
is unique for
each
commanded
behavior

5) Input device
results in
unique
behavior

7) Minimize the
occurrence of
autonomous
changes in
behavior

6) Minimize the
occurrence of
autonomous
changes in
behavior that
over-ride
operator
instructions

Table 2: Summary of design principles reflected in the rule-based model of the
automation.

24 P C A I

Design Principle 8: Automation should
present the operator with clearly labeled content
on the display feedback device to reflect the
behavior commanded by the automation.

A critical element of the design is the
content of the feedback display devices. The
feedback display devices should reflect the

automation’s commanded behavior to fulfill
the task goal. The behavior description
(middle column) in the rule-based model
serves as an excellent source of operationally
meaningful content for the displays. For
example, an operator task goal to hold an
altitude commanded by an action on the

input device labeled hold (see Figure 1),
should have an accompanying feedback
display annunciating hold altitude.

Despite the obvious nature of this
design principle, it is easy to find
automation examples where the content of
the display feedback has to be interpreted by

the operator to infer the behavior
commanded by the automation.
This type of inference requires
that the operator memorize and
recall information during
operation. This type of
memorized knowledge is error-
prone and subject to neglect
when things get busy.

Design Principle 9: Content
on feedback display devices should
reflect one, and only one, behavior
commanded by the automation.

The true behavior,
commanded by the automation
via the values of the output
commands, is not reflected in the
display feedback device in Table
1. In fact, the display feedback
device only reflects the behavior
commanded by Output
Command 1 and does not take
into account the combinatorics of
Output Command 1 and 2.

In this example, rules 1 and
3 share the same display feedback
(“Brake”), despite the different
output commands. This display is
functionally overloaded. Operators
learning the behavior of the
automation by observation are
likely to build inaccurate mental
models of how the automation
works. This has implications on
how they use the automation —
especially in abnormal situations.

The solution is including
unique feedback displays for each
combination of output
commands. Again, the behavior
descriptions (middle column) can
be used as the content for these
displays. An experiment
conducted by NASA showed that
pilots flying a modern airliner
with unique displays for
commanded behavior
outperformed their peers with
functionally overloaded displaysii.

Conclusion - Turning
Intuitions into Design
Habits

A good user-interface design
starts and ends with a definition
of the operator’s task goals. The

CIRCLE 15 ON READER SERVICE CARD

Version 3.0

Coming Soon

N o v e m b e r / D e c e m b e r 2 0 0 1 25

rule-based expert system model is a powerful
way to capture the operator’s task goals and
ensure the design of a complete and
consistent user-interface.

With hindsight, it is hard to imagine
how user-interfaces are designed that violate
the nine design principles defined above. It
has been our experiences that, for the most
part, these less than optimum designs are
not created intentionally. Instead, they
emerge through long development and
upgrade cycles with design teams staffed
with changing personnel.

To combat this emergent phenomenon
we found rule-based expert system models
are useful “book-keeping” design tool that
keeps us honest. Although building these
tables for large complex systems is time-
consuming and difficult, our experience
designing user-interfaces for aircraft cockpits
is that it is well worth the effortiii. One
interesting phenomenon that we have
noticed is that designers working with these
rule-based models quickly build intuitions
about what will result in good and bad user-
interfaces designs without having to
construct the rule-based model. In this way
constructing the rule-based model is a
powerful learning mechanism that converts
designers with intuitions about good user-
interfaces, to designers with good user-
interface design habits.

1 Lance Sherry is a researcher at
Honeywell Aerospace Electronic
Systems in Phoenix, Arizona. He can be
reached at lance.sherry@honeywell.com

2 Mike Feary is a researcher in Human
Factors at NASA Ames Research
Center. He can be reached at
mfeary@mail.arc.nasa.gov

3 Norman, Don (1988) The Design of
Everyday Things. Doubleday: NY. NY.

i Mumaw, R., N. Sarter, C. Wickens, S.
Kimball, M. Nikolic, R. Marsh, W. Xu,
and X. Xu. (2000) Analysis of pilots’
monitoring and performance on highly
automated flight decks. Boeing
Commercial Airplane, Seattle, WA.

ii Feary, M., D. McCrobie, M. Alkin, L.
Sherry, P. Polson, and E. Palmer (1998)
Aiding Vertical Guidance
Understanding NASA/TM-1998-
112217

iii Sherry, L., M. Feary, P. Polson, R.
Mumaw, and E. Palmer (2001) A
cognitive engineering analysis of the
flight management system vertical
navigation function. Human Factors
and Aerospace Safety 1(3), 223-245..

Content Analysis - Information Extraction - Email Response - Categorization
eCRM - Filtering - Knowledge Management - Summarization - Text Mining

e-Intelligence - Natural Language Query - Natural Language Understanding

Brings deep text analysis capability
to these applications, and more...

An innovative Integrated Development Environment for building
deep text analyzers that integrate with your broader applications

�������� ��	�
���
 Integrated GUI
 Many development accelerator tools
 NLP++ - a C++ like language
especially for deep NLP programming

 Knowledge base management system
 Automatic rule generation
 Runtime API

 Deeper text analysis capabilities
 Rapid analyzer development
 Reduced programming resources
 Quicker time to market
 Fast processing with compiled mode
 Extensible, maintainable text analyzers
 Ready for integration with applications

Text Analysis International, Inc. www.textanalysis.com

1669-2 Hollenbeck Ave., #501, Sunnyvale, CA 94087
Email: info@textanalysis.com

Voice: (650) 417-2059 x2452
FAX: (650) 417-2059 x2452

NEW TM

VisualText

CIRCLE 21 ON READER SERVICE CARD

