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Abstract

Performance modeling has been made easier by architectures
which package psychological theory for reuse at different
levels. Both CPM-GOMS, which packages theory at the task
level, and ACT-R, which packages theory at the lower level
of rules for perceptual-motor interaction, have been shown to
be useful. This paper describes ACT-Stitch, a framework for
translating CPM-GOMS templates and interleaving theory
into ACT-R. The research involved in producing ACT-Stitch
will benefit reusable template research by showing how to
implement templates and interleaving in a new architecture
that processes resource information. ACT-R research will
benefit from re-usable productions packaged at a higher task
level and from the multi-tasking control structure used that
allows ACT-R to interleave productions from different
templates. The zero-parameter predictions of ACT-Stitch are
empirically validated.

Introduction
Predicting well-practiced human performance in human-
computer interaction (HCI) domains by means of computer
modeling is a valuable but difficult process. For example,
modeling has been used to predict the outcome of a test of
new computer workstations, saving a telephone company
millions of dollars per year (Gray, John & Atwood, 1993),
but much of the modeling was done by hand. 

For accurate predictions, a large amount of psychological
theory needs to be applied. Several modeling architectures
have been developed to make modeling easier by packaging
this theory for reuse. CPM-GOMS (John, 1988; 1990) uses
templates of behavior to package at a task level (e.g., mouse
move-click, typing) predictions of lower-level cognitive,
perceptual, and motor resource use. These templates are
interleaved to reflect the ability of skilled people to perform
parts of one task in parallel with another. For example, an
eye-movement study has demonstrated interleaving in a
hand-washing task -- while people perform the subtask of
first getting their hands wet they interleave a look to the
soap dispenser before performing the motor actions in the
subtask of soaping their hands (Pelz & Canosa, 2001). The
CPM-GOMS theory has been automated (John, et al., 2002)
in a computational architecture that schedules blocks of
abstract resource use (Freed et al., 2003). ACT-R (Anderson
& Lebiere, 1998; Anderson et al., submitted) uses a
computational production system architecture for packaging
knowledge at the lower level of rules for working with
cognitive and perceptual information and motor actions. In
contrast with CPM-GOMS, the ACT-R system can interact
with an environment to perceive objects and manipulate
them. However, ACT-R does not have a built-in theory of
multi-tasking which would interleave tasks, although some

work has been done in modeling multi-tasking in the ACT-R
architecture (Byrne & Anderson, 2001; Lee & Taatgen,
2002; Salvucci, 2002).

This paper presents a new framework, ACT-Stitch, which
combines the usefulness of modeling at the task level with
the process theory of a lower-level cognitive architecture. It
uses a process of macro-compilation similar to that used by
Salvucci and Lee (2003) to translate CPM-GOMS templates
into ACT-R productions. Their system will be compared to
the current system in the discussion section, but one
difference is that their system models at the level of KLM-
GOMS, which does not interleave cognitive operators (John
& Kieras, 1996). The control structure used by ACT-Stitch
to achieve the interleaving of cognitive operators from
different templates is one of the major contributions of this
paper. The research involved in producing ACT-Stitch will
benefit reusable template research by showing what aspects
of template and interleaving theory are important in a new
architecture that processes resource information. ACT-R
research will benefit from re-usable productions packaged at
a higher task level and from the multi-tasking control
structure used that allows ACT-R to interleave productions
from  different templates.

Templates
Templates are building blocks of human behavior containing
a detailed theory of cognitive, perceptual, and motor
behaviors. They are beneficial for modelers because they
package this theory at the task level and can be reused in
different applications (Matessa et al., 2002). Even behavior
as simple as a mouse move and click requires coordination
of the use of cognitive, perceptual, and motor resources, as
Figure 1 shows in PERT chart form with boxes representing
resource use and lines indicating dependencies. The
template was developed for the simple task of clicking on lit
circles by Gray and Boehm-Davis (2000), but has been
successfully reused for clicking to operate a simulated
automated teller machine (John, et al., 2002).

Templates require a theory of interleaving to reflect the
ability of skilled people to perform operations from different
tasks in parallel. When CPM-GOMS was first developed,
this interleaving was done by hand, with modelers applying
their knowledge of the psychology involved. John et al.
(2002) codified this knowledge and implemented automated
interleaving in a system that scheduled blocks of abstract
resource use. Results from this work were used in the
construction of ACT-Stitch templates that produce
productions which ACT-R can interleave. 



Figure 1:  A template of carefully moving the cursor to a target and clicking the mouse 
(adapted from Gray and Boehm-Davis, 2000).

Macro-Compilation
ACT-Stitch uses a process of macro-compilation to translate
CPM-GOMS templates of human behavior into ACT-R
productions. More specifically, cognitive operators are
translated into productions with ACT-R perceptual-motor
commands that represent CPM-GOMS perceptual-motor
operators. Productions also contain a control structure that
allows ACT-R to implement CPM-GOMS interleaving and
have productions from one template execute during the
execution of productions from another template. This
differs from the ACT-Simple system (Salvucci & Lee, 2003)
that compiled a sequence of KLM-GOMS tasks into a series
of productions which were controlled by an incrementing
state counter.

Macro-compilation should not to be confused with ACT-
R production compilation in which two productions are
translated into another more efficient production. Salvucci
and Lee (2003) argue that macro-compilation facilitates
theoretical consistency, inheritance of architectural features,
model integration, and model refinement. Theoretical
consistency is maintained by having the higher task-level
template share a consistent representation with the lower-
level ACT-R architecture. The macro-compiled template
inherits parameters and limitations that increase
psychological plausibility as well as a framework for
learning, showing individual differences, and making errors.
Model integration is helped by providing a common
language where models from different domains can interact.

ACT-Stitch Framework
To understand how ACT-Stitch works, this section will first
explain the process of how a modeler uses ACT-Stitch, then
describe the ACT-R architecture, then go into more detail
about macro-compilation and production execution, and
finally give an example of macro-compiled productions.

ACT-Stitch modeling
ACT-Stitch currently has two templates implemented, Slow-
Move-Click and Fast-Move-Click, based on templates from
Gray and Boehm-Davis (2000). For Gray and Boehm-
Davis, Slow-Move-Click represented the selection of a
target when there is uncertainty about where the target
appears in each trial. Fast-Move-Click represented the
selection of a target at a known location. and skipped the
verification of the cursor being at the target. These
templates were reused by John et al. (2002) in modeling
interactions with a simulated automated teller machine.
There, Slow-Move-Click represented the selection of
difficult targets at far distances, requiring more careful
verification of target and cursor location before clicking than
the selection of easier targets, which are represented with
Fast-Move-Click.

To use ACT-Stitch, the modeler creates two lists, one for
target objects and one for a task sequence. The target object
list contains target names, positions, and sizes. The task
sequence list contains template/target pairs. The system
then creates an environment including target objects and
macro-compiles templates into productions. The ACT-R
system is then run, and information about resource use and



dependenciesis automaticallystored. This informationcan
be exported to a PERT chart viewing program.

ACT-R
ACT-R (Anderson & Lebiere, 1998; Anderson et al.,

submitted)is a computationaltheory of human cognition
incorporating both declarative knowledge (e.g., addition
facts)andproceduralknowledge(e.g.,theprocessof solving
a multi-column additionproblem)into a productionsystem
where proceduralrules act on declarativechunks.Chunks
aremadeup of slotscontaininginformation,andproduction
ruleswhich matchthe informationin chunkslotsareableto
execute. The goal chunk representsthe current intentions.
The ACT-R systemincludesthe capability for modelersto
createsimulatedenvironments,such as screeninterfaces.
Production rules have the ability to interact with this
environment by perceiving objects and making motor
movementsthroughperceptualandmotorbuffers. With this
interaction,ACT-R can make use of Fitts' Law to make
predictionsof movementtime basedon distanceto target
and target size.

ACT-Stitch production creation
CPM-GOMS templatescontain predictions of cognitive,
perceptual, and motor behavior. When translating a
template into ACT-R productions, each cognitive operator in
a template corresponds to a production in ACT-R.
Cognitive operatorsand productionsare both predictedto
take50 msto performby eachtheory. Both theoriespredict
parallel execution of cognitive, perceptual, and motor
processes. In CPM-GOMS, each perceptualand motor
operatorrequiresan initiation by a cognitiveoperator. This
correspondsto the ACT-R requirementof productionsto
initiate vision and motor processes. To move visual
attentionto a new location and perceivean object, CPM-
GOMS predictsthat it takes30 ms to move attentionplus
some time for perception, while ACT-R predicts that is takes
85 ms to move attention with no additional time for
perception.For mousemovement,CPM-GOMSpredictsan
execution time calculated by Fitts' Law, while ACT-R
predictsa 200mspreparationtime plusa time calculatedby
Fitts'Law plusa 50 msfinish time. Formouseclicks,CPM-
GOMS predictsa 100 ms mousedown time plus a 100 ms
mouseup time, while ACT-R predictsa 150ms preparation
time plus a 60 ms executiontime plus a 90 ms finish time.
ACT-R canperformmotor preparationsin parallelwith the
motorexecutionsandfinishesof previousmotorcommands,
and ACT-Stitch createsproductionsthat take advantageof
this capability.

ACT-Stitch creates a set of productions for each
template/targetpair in the task list, and the productions
created from macro-compilation must insure proper
sequencingof motor actions,insurethe ability to allow the
correctproductionsin future templatesto interleaveduring
the executionof productionsin the current template,and
insuretheability to block theincorrectproductionsin future
templatesfrom interleavingwith productionsin the current
template.

Thesethreerequirementsareaccomplishedin productions
by using information in the current goal as well as
perceptual-motorbuffers. Slots in the goal are createdfor
the vision and handresourcesfor both the intendedaction
andtargetmakinguseof theresource.This makesfour slots
in the goal: vision action, vision target, hand action, and
handtarget. To insurepropersequencing,theactionslotsin
productions of the current template are filled with an
intendedaction appendedwith the unique number of the
current template. Also, the target slots are filled with an
intendedtarget. The intendedactioncannotbe usedalone
sincewithout the templatenumberno sequenceinformation
would bestored.The templatenumbercannotbeusedalone
since there may be multiple actions in the sametemplate
usingthe sameresource(e.g.,mousemoveandclick). The
intended target cannot be used alone since sequence
information would be lost if a target appearstwice in a
sequence(e.g., clicking the same number twice). The
intended target cannot be ignored since the sameaction
could be used in a templatefor two targets(e.g., verify
target and verify cursor).

To insure the ability to interleaveproductions,separate
action slots are usedfor eachresource(vision and hand).
This allows, for example,a procedureto initiate a vision
actionfrom a future templatebeforea procedureinitiatesa
handactionfrom thecurrenttemplate. To insuretheability
to block productionsfrom future templates,the actionslots
are filled with intendedactionsappendedwith the current
templatenumber. This prevents,for example,movingto the
next targetwhile the handresourceis free betweenmoving
to the currenttargetandclicking on the currenttarget. The
templatenumbercannotbe containedin a separategoal slot
becausethat would not allow productionsfrom the next
templateto executebefore the productionsof the current
template have finished.

Perceptual-motorbuffers are also used in sequencing.
Productionsthat interactwith the perceptual-motorbuffers
checkto makesurethe buffers are free beforeusing them.
Also, the task logic of perceptionand action makesuseof
buffers to order productions. For example,the processof
verifying a targetpositionbeforeclicking requiresfilling the
visual location buffer with the location of the intended
target, then filling the visual object buffer with the object
found at that location, and then making a mouse click
through the motor buffer.

Thesegoal slotsandbufferscould beextendedto include
resourcessuchasa left hand andbufferssuchasmemory
retrieval in future template development.

ACT-Stitch production execution
The ACT-R systemis initialized with the goal containing
the actionsandtargetsof the first template. ACT-R selects
productionsto executebasedon the stateof the goal and
perceptual-motorbuffers. Productionsmake calls to the
perceptual-motorsystemwhich has assumptionsfor how
long the resourcesareused. Slack time correspondsto the
time a resourceis availableduring procedureexecution. A
production that is created from the next template can
execute(evenif all the productionsmadefrom the current



template are not finished executing) when it matches values
in the action and target goal slots. Action slots contain
intended actions appended with unique template numbers,
and target slots contain intended targets. When a resource is
no longer needed by a template, a production in the template
will fill the action slot with the next intended action
appended with the next template number, and the target slot
will be filled with the next intended target.

Within-template dependencies are implemented by
productions waiting for action and target slots to be filled in
the goal and for resources to be available. Template
productions are created so that a production will change the
contents of action and target slots appropriately. A
production (A) from a future template that is waiting for
another production (B) in that template to change the
contents of action and target slots cannot execute during the
execution of productions in the current template until
production B is executed.

Relationships across templates are established the same
way as within templates, using action and target slots in the
goal. Values in these slots allow the blocking of
productions that would use resources even if the resource is
free.

Example ACT-Stitch productions
To get an idea of what a template looks like after being
macro-compiled into ACT-R productions, the following
shows pseudo-code for the Fast-Move-Click template. Each
instance of a template in the task sequence list would have
its own set of productions labeled by the position of the
template in the list (x).

Tx-Init-Move-Cursor
IF

right hand action goal is to move in this template
right hand target goal is this template's object
motor preparations have completed

THEN
move cursor
empty right hand target goal
set right hand action goal to click in this template 

Tx-Attend-Targ
IF

vision action goal is to attend target in this template
vision target goal is this template's object
visual location and object buffers are empty
vision is available

THEN
 fill visual location buffer with location where 

    this template's object should be

Tx-Init-Eye-Move
IF

vision action goal is to attend target in this template
vision target goal is this template's object
visual object buffer is empty
visual location buffer holds object location

 THEN
fill visual object buffer with object at location
empty visual location buffer

Tx-Verify-Targ-Pos
IF

vision action goal is to attend target in this template 
vision target goal is this template's object

right hand target goal is empty
visual object buffer holds object at location y
location y is the expected location of this template's object

THEN
empty visual object buffer 
set visual action goal to attend in the next template 
set visual target goal to next template's object
set right hand target goal to this template's object

Tx-Init-Click
IF

right hand action goal is to click in this template 
right hand target goal is this template's object
motor preparations have completed

THEN
click mouse
set right hand action goal to move in next template
set right hand target goal to next template's object

Productions that initiate motor movements (Init-Move-
Cursor and Init-Click) first check that the motor preparations
from previous motor movements have completed Since
motor preparations can happen in parallel with motor
executions and finishes in ACT-R, this means that
preparations can start during previous executions and
finishes. Productions could be written to wait for the
previous executions and finishes to complete before starting
preparations, but they would not be as efficient.

Empirical Validation
ACT-Stitch was applied to the ATM task used by John et al.
(2002) to test their automation of CPM-GOMS. The task
was to make an $80 withdraw from a checking account on a
simulation of an automated teller machine. Users interacted
with the ATM by using a mouse to click on simulated keys
or slots. The users were instructed to follow the following
steps:

Insert card (click on the card slot)
Enter PIN (click on the 4, 9, 0, and 1 keys in turn)
Press OK (click on the OK button)
Select transaction type (click on the withdraw button)
Select account (click on the checking button)
Enter amount (click on the 8 and 0 keys)
Select correct/not correct (click on the correct button)
Take cash (click on the cash slot)
Select another transaction (click on the No button)
Take card (click on the card slot)
Take receipt (click on the cash slot)

This task was repeated 200 times by the users, and results
were analyzed using the means of trials 51-100. This level
of practice is comparable to that used by both Card, Moran,
and Newell (1983) in a text editing task and Baskin and
John (1998) in a CAD drawing task when they explored the
effects of extensive practice on match to various GOMS
models. As in John et al. (2002), Slow-Move-Click
templates were used for targets that were difficult to select
because of size and distance (e.g. the thin card slot) and
Fast-Move-Click templates were used for easier targets (e.g.
keypad keys).  

Figure 2 compares ACT-Stitch predictions of mouse click
times to average subject mouse click times of trials 51-100.
The results are highly correlated (r=.96) with a low average
absolute difference of 62 ms. 



Figure 2:  Average subject performance compared to ACT-Stitch predictions, 
ACT-Stitch predictions with no interleaving, and Fitts' Law predictions.

Figure 2 also shows the value of cognitive modeling over a
Fitts' Law only prediction and the value of ACT-Stitch
interleaving. A Fitts' Law prediction has a high correlation
with subject performance (r=.97) but predicts faster
performance, with an average absolute difference of 416 ms.
A version of ACT-Stitch was created that did not interleave
template productions, and while the correlation with subject
performance was still high (r=.95), the predictions are too
slow (average absolute distance = 257 ms).

The effect of interleaving on resource use is shown in
PERT chart form in Figure 3. This output is from the
Sherpa visualization tool developed by John et al. (2002) in
their work to automate CPM-GOMS. The top row shows
vision resource use, the second shows cognition, the third
shows motor preparation, and the bottom shows motor
execution and finishing. Resource use is indicated with
shaded boxes, and instances of resource use in the same
template are shown with the same shade of gray. The figure
shows how cognitive, perceptual, and motor resources are
interleaved between templates.

General Discussion
ACT-Stitch appears to be a useful framework for modeling
the cognitive, perceptual, and motor processes involved in
HCI tasks. With a simple description of an environment and
task sequence, it is able to produce detailed, zero-parameter
predictions that match well to human data.

ACT-Stitch has some similarities and differences with the
ACT-Simple framework created by Salvucci and Lee
(2003). They both use a process of macro-compilation to
translate task-level descriptions of behavior into ACT-R
productions, which give a detailed account of the cognitive,
perceptual, and motor processes involved in the task. ACT-
Stitch adds the ability to easily simulate simple
environments, the ability for templates to interleave

cognitive operators, and the ability to view resource use of
the model with PERT chart tools. With the environment,
models can take advantage of Fitts' Law to make detailed
predictions of movement times. With a theory of
interleaving that is based on fixed resources instead of
spontaneous task demands, ACT-R modelers have the
ability to start moving away from control theory based on
simple chained productions. With PERT chart output,
complex interactions of resource use in models can be
understood easier.

CPM-GOMS is assumed to model skilled performance,
and a CPM-GOMS model translated into ACT-R can be
thought of as a state of performance after learning. With the
ACT-R compilation process of learning more efficient
productions, the whole learning curve from slow reading
and remembering instructions to quick interleaving of
resources can be studied. There has already been some start
on this by Lee and Taatgen (2002), where they describe a
model of performance on an air traffic controller task that at
first has slow performance to due interpreting instructions,
then speeds up due to production compilation creating more
efficient productions, and eventually interleaves an optional
step to look at wind conditions during multiple keystrokes.

In the ATM task, ACT-Stitch accounts for the data as well
as CPM-GOMS automated in another system (see John et
al., 2002), but it differs from that system in that it predicts a
200 ms motor preparation that occurs between the
movement of attention and motor execution (see Figure 3).
ACT-Stitch predicts that during this motor preparation time
previous motor operations are taking place. This prediction
could be tested with eye-tracking experiments.

This paper offers only a first step of a template and
interleaving theory in ACT-R. Many more templates are
needed to test the robustness of the representations used for
the interleaving theory.  
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Figure 3:  PERT chart of ACT-Stitch interleaving perceptual, cognitive, motor preparation, 
and motor execution and finishing resources

There are some interleaving abilities that the current
framework cannot accomplish, for example, hovering a hand
over a key for a key press that occurs in a template that is
more than one template away in the future, or blocking an
arbitrary combination of resources (such as both hands
during typing) from interleaving. But this work is a first
step to easier modeling and multi-tasking in ACT-R.
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