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Abstract

Neural-network-like models of receptor position learning and interpolation function learning are being
developed as models of how the human nervous system might handle the problems of keeping track of the
receptor positions and interpolating the image between receptors. These models may also be of interest to
designers of image processing systems desiring the advantages of a retina-like image sampling array.

Introduction

The human visual system differs from most artificial image acquisition systems in that the photoreceptors are
not regularly arrayed. The variable density of the retina is well known, but the irregularity of array has only
recently received quantitative attention. The cones, which subserve vision at normal light levels, can be
found in small neatly packed hexagonal arrays in the central fovea, but these small arrays are rarely larger
than 0.1 degree and they are irregularly oriented. The night-vision-serving rods are absent from the center of
the retina, but are more numerous than cones at 1 degree of eccentricity and completely isolate the cones
from each other by 2 degrees. At this point the cone array is quite disordered (1,2).

Designers of artificial systems may be attracted to the advantages of continuously varying resolution: a wide
field of view and high peak resolution with relatively few photoreceptors. They may also desire the
advantages of irregular sampling: graceful image degradation in the "Nyquist" spatial frequency region and
unstructured aliasing (3,4). The problem then arises of how to interface a retina-like array with the rest of an
image processing system which is designed around rectangularly arrayed pixels.

The human visual system appears to have solved a similar problem in that the variable grain of the retina is
not apparent to us and the apparent fineness of visual detail remains high over several degrees of visual
angle. We hypothesize that the visual system may actually interpolate the image between retinal samples as
suggested by Barlow (5), so that various visual subsystems can sample the image according to their own
needs. Our models for how the visual system might provide for this interpolated image are mechanisms for
interfacing irregularly sampled images to regular arrays.

The models will be described in two separate sections. The first section is concerned with the problem of
how the positions in the sampling array could be known in detail by higher centers. When the connecting
tracts develop, the general arrangement of the cone array is preserved, but it is difficult to see how the exact
positions could be known without some calibration process. The second section is concerned with the
construction of interpolation functions for reconstructing the sampled image between the irregularly
positioned samples.

Section 1: Learning Maps of Receptor Positions

We have developed a self-organizing learning procedure which computes the output positions of
connections mapping input units into output units. The procedure iteratively tries to minimize the difference
between measures of the input distance and the output distance. Transformations of the input distance can
allow the procedure to compute transformed maps with variable magnification. The activation of the process
is assumed to be spontaneous activity during development rather than visual input as in the position
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calibration scheme of Maloney (5,6). When there is no exact solution, the mapping will only stabilize if the
learning rate goes to zero with time. Like the models of Kohonen (7) and Ritter and Schulten (8), this model
assumes that there is a pre-existing mapping from input space to output space and that the learning process
moves the output positions to "improve" the mapping.

We assume an array of n receptors having positions in this first layer specified by cartesian coordinates,

P(i) = (x(i), y(i)), i = 1, ... , n. (1)

The distance from the ith to the jth receptor will be denoted by

d(i,j) = [(x(i)-x(j))2+ (y(i)-y(j))2]0.5. (2)

Each receptor also has a connection to a position at the second, higher level denoted by

P'(i) = (x'(i), y'(i)), i = 1, ... , n. (3)

The adjustment process begins with a single receptor becoming spontaneously active, say unit i. This activity
spreads along two distinct paths. In one path the activity spreads first laterally in the receptor layer to all
inactive units according to a lateral spread function,

s(d(i,j)) = s(i,j). (4)

This activity level is then transmitted up the line of the non-active unit j to the higher level. The second path
for the spontaneous activity proceeds up the line of the active unit where it spreads laterally to the endpoints
of the other units in the higher level according to another spread function,

s'(d'(i,j)) = s'(i,j). (5)

The functions s() and s'() are assumed to be strictly monotonic functions of distance.

A comparison process computes the difference between the two activity levels and forms an error signal,

e(i,j)= c(s'(i,j)-s(i,j)), (6)

where c() is a sign-preserving transformation if s() and s'() are monotonically decreasing in d (the
physiologically plausible case) or sign-inverting if they are monotonically increasing. The gain of c() must be
low enough to keep the process stable. Finally, the higher level point position of the inactive point is moved
along the line between the two points by the rule,

P'(j) <= P'(j) + e(i,j)(P'(j)-P'(i)). (7)

The arrow (<=) indicates replacement. The high level point postion of the inactive point is thus moved in a
direction which will tend to correct the distance error.

Figure 1 shows an example simulation of the process. Each point representing a position has been
connected by lines to its near neighbors in the input array. The receptor array coordinates were normalized to
have an average spacing in the neighborhood of unity. The spread functions were identical Cauchy
distributions:

s(d) = s'(d) = 1/(1+d2). (8)

The comparison function was the identity function,

c(d) = d. (9)

The selection of the active receptor was done at random without replacement.
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The receptor input positions are shown in Figure 1a. They are central foveal cone positions measured by
Hirsch and Hylton (9). The initial positions of the points in the higher layer are shown in Figure 1b. They were
chosen by adding uniform random variables on the interval (0,4) to the receptor array x and y coordinates.
We call the selection of one point for activation and the adjustment of the other n-1 positions an update and
n updates a cycle. Figure 1c, 1d, 1e, 1f show the output positions after 1, 2, 6, and 10 cycles, respectively.
After about a dozen cycles the process converged to a solution with negligible error in the distances. The
orientation and offset of the output array is not constrained by the process. Both the size and the offsets in
Figure 1 were normalized for display convenience. Similar results have been obtained with arrays whose
spacing variability is typical of that in the fovea and in the periphery, with both gaussian and cauchy spread
functions, and with both random and sequential activation of receptors.

Figure 1. An example of position learning using the foveal cone position data of Hirsch and Hylton (9). a -
upper left - ) The original configuration. b - upper right -) The randomized positions. c - middle left - ) The
configuration after 1 cycle (102 updates, each comprising 101 adjustments). d - middle right - ) 2 cycles. e -
lower left - ) 6 cycles. f - lower right - ) 10 cycles.

Section 2: Interpolating Images between Receptor Positions

A system with regular sampling at the photoreceptor level can reconstruct an accurate estimate of the
original image by low-pass filtering the sampled image with a space-invariant filter (10). Quality
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reconstruction of images which are irregularly sampled demands space-variant filters. If the reconstruction is
to be an interpolation (correct at the sample positions), the impulse response at each sample point must
have zero response at all of the other sample points. The best known method for reconstructing irregularly
sampled images was proposed by Yen (11). It correctly reconstructs band-limited images sampled at the
Nyquist rate. The basis of the method is the definition of a regular lattice with the same number of samples
over the image. First a transformation is constructed which computes what the sample values at the regular
points would be given the values at the irregular points, then the standard sinc interpolation is performed
between the regular sample points.

Let V(i) be the irregularly sampled values, R(j) be the rectangular array values, and W(i,j) represent the linear
transformation from V to R, so that

R(j) = V(i)W(i,j). (10)

The transformation W(,) turns out to be the inverse of the matrix S(,) of "sinc distances" between the the
regular points and the irregular points,

S(j,i) = sinc[k(x(i)-x(j))]sinc[k(y(i)-y(j))]. (11)

Figure 2a diagrams a unit which multiplies inputs by weights and then sums them, a type of artificial neuron
which implements the operation of Equation 10. Although biological neurons are nonlinear in their output,
visual system units at the cortical level have been found which behave quite linearly. Possibly the output
nonlinearities in the outputs of earlier layers are are compensated for in a manner similar to methods used by
electronic engineers: complementary or push-pull circuitry and feedback. We consider to have constructed a
neural network implementation of a system if it can be constructed of these units or other units (such as
comparators or multipliers) which can easily be constructed of these units. Figure 3a shows a neural network
implementation of Yen interpolation. The response to a single unit at the irregularly-spaced input layer is a
linear combination of regularly-spaced sinc functions which combine to give zero response at all the other
irregularly-spaced positions.

Although this procedure can be used to construct interpolation functions for irregular sampling arrays in
general, the arbitrary selection of the corresponding regular array is troublesome and it is difficult to see how
such a procedure could be implemented in the visual system. The method was originally intended for regular
arrays with small amounts of position jitter. In this case the corresponding regular array is obvious and the
matrix S(j,i) is easy to invert because the small coefficients play a small role. In the case of variable density
sampling, coefficients for units i and j very far apart are crucial to the inversion of the matrix, leading to
serious computational problems.

Another scheme for interpolation between irregular samples has been studied by Chen and Allenbach (12). A
network implementation of this method is shown in Figure 3b. Again a network transforms the inputs into
outputs according to Equation 10, but now these outputs are in the same position as the inputs. Again the
transformed inputs are used to adjust the gain of sinc functions centered at these values, so Equation 11
ensures that the method generates an interpolation.

Using the input positions as output positions obviates the need to define a corresponding regular array and
in case of variable density, the calculation of the inverse of the S(j,i) matrix is generally easier, since the
inverse weights are principally controlled by nearby positions. We suffer a loss for this improvement: it is no
longer as easy to characterize the set of images for which the interpolation is exact. While the Yen
interpolation correctly interpolates any image band-limited to the Nyquist frequency, the Chen-Allenbach
method only correctly interpolates images which are linear combinations of sinc functions centered at the
sample points and projects other images into that space.

There is no need to use sinc functions or even space-invariant filters to perform interpolation. Any smoothly
disappearing functions, S(j,x,y), may be used to smear the network output. If the matrix S(j,i) = S(j,x(i),y(i)) is
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invertible, the network of Figure 3 can provide an interpolation (correctly reproduce the image at the sample
points). If the interpolation functions are too narrow, low spatial frequencies cannot be accurately
interpolated and if the functions are too broad, the accurate image reconstruction depends upon difficult-
to-obtain accuracy in the inverse matrix W(,).

Figure 2. a - upper - ) The basic "neural" network unit. It multiplies each input line by a weight and sums the
products. b - lower - ) The weight adjusting network for learning the weights.
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Figure 3. a - upper - ) A network implementation of Yen interpolation. The weights of the network are chosen
so that the weighted sum of the sinc functions generated at the output of the "neurons" is zero at the
receptor positions if only one receptor is activated. b - lower - ) Chen-Allenbach interpolation. Same as a)
except the sinc functions are generated at the receptor positions.

To implement the interpolation scheme above, the visual system needs to compute W(,). We will now
describe a network implementation of a developmental process for computing these weights.
Mathematically, this will be an iterative procedure for computing the inverse of a matrix. The basic idea is to
use a spread function as input to the weight matrix and then adjust the weights so that the output from the
corresponding transformed unit is unity and the rest are zero, so that the final output is the input spread
function. When this is done repeatedly for all the spread functions, the weight matrix will converge to the
correct solution.

Figure 4 shows additional components which need to be introduced. The lines from the neural network to the
spread function generation are cut and spontaneously active input units are introduced which, when active,
generate the spread function for that line at output lines that carry the spread function back to the former
input lines. Notice that it is only these lines which must be accurately positioned according to the retinal
sampling array. Let i be the index of the spontaneously active unit, then the kth output line will have the
value,

R(i,k) = Sj [S(i,j)W(j,k)]. (12)
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This is then subtracted from the desired output, which is provided by the new input units, to form the error
term,

E(i,k) = I(i,k) - R(i,k), (13)

where I is the identity transformation.

Figure 2b shows the details of the weight adjustment scheme for each unit. The error term is multiplied by
the input on the old signal line, then by a gain factor, c, and then added to the previous value of the weight,
giving the new weight as

W(j,k) = W(j,k) + cS(i,j)E(i,k). (14)

Figure 4. The learning network which feeds a spread function back into the transformation network so that
the transformation weights can be adjusted. An error signal is formed by subtracting the activating pulse
function from the network output. It flows back to the weight adjusting network of Figure 2b, omitted here to
simplify the diagram. The arrow indicates the spontaneously active unit described in the text.

This can be thought of as an equation which is itself iterated in time until it zeros the error, or it can be seen
that the errors E(i,k) are reduced to zero in one step if

c = c(i) = 1/ Sj [ (S(i,j))2] , (15)

since then

Sj {S(i,j)(W(j,k) + c(i)S(i,j)E(i,k))} = I(i,k). (16)

This shows that the multiplication by the learning rate constant c can be avoided if the sampled spread
functions have unit length.

In the above equations, coefficients other than S(i,j) can be used as multipliers of the error E(i,k). This value
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was originally chosen so that the direction of the correction would be consonant with the sign of the input for
the particular weight and so that corrections would not be made to weights that had no input. Another
reason for choosing this coefficient is that it is the gradient of the total squared error as a function of the
W(j,k). Gradient descent methods are notorious for slow convergence (13, p. 302). We have found that
matrices for spread functions whose width is less than the average spacing converge rapidly, but that broad
widths can lead to excruciatingly slow convergence.

By analogy to a method for improving the precision of an inverse (13, p. 42) an alternate weight adjustment
is,

W(j,k) = W(j,k) + c(i)W(j,i)E(i,k), (17)

which zeros the error if

c(i) = 1/R(i,i). (18)

Press (et al.) (13) only discuss the behavior of the formula when the initial approximation is very close, but our
experience has been that it converges much faster than the previous scheme.

A very similar formula that actually computes the inverse directly when the computation is done once for
each i comes from the Sherman-Morrison method of adjusting the inverse of a matrix which is modified by
adding an outer product (13, p. 66). If W is initially the identity transformation, then the adjustment for
bringing in the ith weighting function is exactly

W(j,k) = W(j,k) + c(i)W(j,i)E'(i,k), (19)

where

E'(i,k) = W(i,k) - R(i,k), (20)

and

c(i) = 1/[1 - W(i,i) + R(i,i)]. (21)

Although these latter equations are as easy for an ordinary digital computer to execute as the first procedure,
they are not as easily implemented in a network. They do provide a practical way of taking advantage of the
sparseness of S(i,j) in calculations involving large numbers of sample points.

Discussion

Physiologists may find it interesting that receptive fields measured at the level of the output units of the
interpolation network have various shapes even though they all perform the same function. This is a
consequence of the variations in receptor spacing. Receptive fields of units responding to the continuous
image would have additional variation corresponding to whether they are close to one output unit or midway
between output units. Although units are usually specified physiologically by their receptive fields, their
function in this case relates more directly to their projective fields. If this interpolation calculation were
actually to be computed as described in the human visual system, it presumeably would occur at the first
level of cortical processing where the inputs are still not orientation specific, and there are enough cells to
sample the output relatively continuously. It is possible that a calculation of this sort is "interpolated" into the
processing of other features and descriptors.

Various image encoding schemes have been proposed in which an image is linearly transformed to a domain
where each transform value represents a region of space and spatial frequency similar to the receptive fields
of primary visual cortex orientation selective simple cells (14,15). Although some of the methods are based
on orthogonal transformations which are self-invertible (16), for many of the schemes the calculation of the

spie89_html https://vision.arc.nasa.gov/personnel/al/papers/89spie/text.htm

9 of 11 1/12/17, 8:35 AM



inverse transformation is a problem similar to the one above: we need to invert an nxn sparse matrix where n
is of the order of the number of pixels in the image. The above solutions to the inverse problem can be used
in this context and the learning network can be regarded as a way to construct an encoding inversion
network (17).

The learning mechanisms described above show that biologically plausible mechanisms can accomplish
some useful calculations which not very many years ago were the exclusive province of large mainframe
computers. The first model takes a matrix of distances as input and iteratively solves for a two-dimensional
configuration of points that satisfy those distances, a problem in multidimensional scaling ordinarily solved
by converting the distance matrix to a matrix of inner products and then factoring (18). The second model
iteratively finds the inverse of a matrix. Both models can be thought of as models which are self-organizing in
the sense that no external reinforcement is provided. However, the actual adjustment rules are those
associated with error-correcting learning.
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