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Abstract

Nonlinear contributions to pattern classification by humans are analyzed by using previously obtained data on discrimination between
aligned lines and offset lines. We show that the optimal linear model (which had been identified by correlating the noise added to the
presented patterns with the observer’s response) can be rejected even when the parameters of the model are estimated individually for
each observer. We use a new measure of agreement to reject the linear model and to test simple nonlinear operators. The first nonlinearity
is position uncertainty. The linear kernels are shrunk to different extents and convolved with the input images. A Gaussian window weights
the results of the convolutions and the maximum in that window is selected as the internal variable. The size of the window is chosen such
as to maintain a constant total amount of spatial filtering, i.e. the smaller kernels have a larger position uncertainty. The results of two
observers indicate that the best agreement is obtained at a moderate degree of position uncertainty, about plus or minus one arc min.
Finally, we analyze the effect of orientation uncertainty and show that agreement can be further improved in some cases.

Keywords:  spatial  vision,  nonlinear  operators,  pattern recognition,  vernier  acuity,  visual  noise,  position uncertainty,  nonlinear  system
identification.

Introduction1. 

Human sensory processing is often studied using psychophysical experiments measuring the discriminability between two stimuli.
The observer essentially acts like a function that assigns a categorization probability to each external stimulus that might be
presented by the experimenter.  At last  year's meeting Beard and Ahumada described a technique generating an image that
represents the observer’s stimulus classification rule when that rule is linear in the stimulus image pixels. The technique involves
adding white noise to the stimulus image pixels and computing the correlation of the noise amplitude in each stimulus pixel with
the observer responses. The sum of the two correlation images for each of the two stimuli gives an estimate of the classification
image. If the observer’s rule is linear, it is equivalent to cross correlating the classification image with the given stimulus image and
assigning a monotonic response probability to each value. The probabilities represent the cumulative distribution of the observer’s
internal noise. Beard and Ahumada estimated the observer classification image and showed that it was not compatible with some
simple models of vernier acuity. Here we present a method for evaluating the adequacy of any computational model of observer
performance  that  is  image  based.  The  method  is  then  used  to  evaluate  some  linear  and  nonlinear  models  for  observer
performance in the vernier task. Our method rejects a best-fitting linear model for two of three observers, but fails to reject simple
nonlinear models.

 

EXPERIMENTAL DATA2. 

The data we will consider were previously obtained and evaluated by two of us . In those experiments, two different patterns were
presented: two horizontal lines, both 16 pixels by 3 pixels, that were aligned in one case and offset by one pixel in the other case.
Observers, whose acuity was verified to be 20/20 or better, had to decide whether the lines were offset or not. A pixel subtended
0.31 arc min at the observer’s eye. To these line patterns, different white-noise images were added at each trial. The noise was of
low contrast such as to minimize its effect on the decision rule but strong enough to influence the decision. A total of 11400 trials
were presented to three observers. Observer PW ran all trials with a peak noise contrast of 0.25. To increase the number of error
trials,  observer  DF’s  noise  level  was  changed to  0.35  and observer  BLB’s  level  was  changed to  0.4  part  way  through the
experiment. The different noise images were sorted by stimulus and observer response into the categories S0R0, S0R1, S1R0, and
S1R1, depending on the stimulus (S0 meaning no offset, S1 meaning offset) and the response (R0 meaning that the observer
responded "no offset", and R1 meaning "offset" response). The average noise image was then computed with the following signs:
- S0R0 + S0R1 - S1R0 + S1R1 to obtain a classification image. The values at different pixels in the classification images indicate
how well the image-intensity values at a given pixel (and different trials) correlate with the observer’s responses (at those trials).
The classification images are shown in Figure 1 (top) for three observers. It is difficult to see the form of the images in the noise.

Figure 2

shows a classification image where the noise is reduced three ways: the data for the three observers is combined, the image has
been spatially smoothed, and it has been quantized so that pixels not at the central gray level represent correlations that are
significantly different from zero.
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The main result was that the influence of the noise is indeed significant such that certain models of vernier acuity can be excluded.
If the observer were ideal, except for optical blur for example, the resulting classification image would have had only the side of the
stimulus that changed when the line was offset.

The simplest assumption would be that observers weighted the intensity values at each pixel with a kernel, which is similar to the
classification images, i.e. they based their decision on linear features. A statistical analysis, however, revealed a lack of fit between
the optimal linear model and the observer performance, therefore suggesting that nonlinear features are important. The importance
of nonlinearities for vision models had been emphasized repeatedly .

The Linear Model3. 

The classification images as such fully specify the linear part of the model - see above and . In this section we describe the
classification  images  by  a  different  mathematical  function  and  show how the  parameters  of  that  function  vary  for  different
observers. The chosen function is

(1)

,

i.e., a Gaussian differentiated by x and y and normalized to unit maximum. The reasons for our choice are simplicity, good fit, and
some considerations by others based on neurophysiological results and geometrical intuition . The parameters of interest are sx
and sy. The values, which optimally fit the classification images, are given in Table 1 in pixels and for different observers. The
goodness of fit also varies with observers and is characterized by the ratio of the peak kernel value (signal) to the root mean
squared error (noise) given in decibels in the last row of Table 1. Observer BLB has the largest kernel size parameters and DF has
the best fit. The kernels are shown as gray-level images in Figure 1, in an arrangement that corresponds to the one in Table 1.

 

Table 1: Spatial parameters of the optimal kernels.

observer
BLB DF PW

sx , arc min 3.1 3.0 2.7

sy , arc min 1.5 1.4 1.1

peak kernel to rms error ratio, dB 16.3 16.4 15.8

Figure 1: Classification images (top row) and estimated kernels (bottom row) for observers BLB, DF, and PW (from left to right). The
images are 64 by 64 pixel large centers of the input images.
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Figure 2: Classification image for all  observers (left),  same image after spatial smoothing (middle), and significant correlations
(right). See text, and for details.

Observer Performance4. 

The raw statistical data are obtained by first counting the number of cases in which no signal was presented (aligned pattern S0)
and the observer responded "no signal" (R0). This number is denoted by NS0R0. By analogy we obtain the numbers NS0R1, NS1R0,
and NS1R1 by denoting the case of offset pattern with S1 (vernier offset), and the corresponding response with R1. From these
numbers the observer d's are obtained by using the inverse of the standard normal cumulative distribution function F-1.

(2)

F-1[q] was implemented in Mathematica as Quantile[NormalDistribution[0,1], q ]. In Figure 3 the d’s for the three different observers
are plotted as a function of (vertical) optimal-kernel size illustrating that the observer(s) with a higher-resolution kernel had better
performance. The images presented to observers DF and BLB had larger noise levels, and these observers performed worse. More
interestingly, kernel size seems to adapt to the larger noise levels.

Figure 3: Observer d' plotted versus optimal-kernel size (sy in arc min). The three data points and a linear fit are shown.

Measure of Model-Observer Agreement5. 

Based on a measure of agreement described in it had been concluded that the linear model could not account for all of the
present data.  In order to identify nonlinear effects,  a more sensitive measure of  model-observer agreement is desirable.  The
measure described below was designed such as to make maximal use of the available data. It is based on the four distributions
S0R0, S0R1, S1R0, and S1R1 shown in Figure 4. The first step is to compute the features for every noise image as described in
Section 6. The (hypothetical) distributions shown on the left are then obtained by sorting the features according to the observer’s
response. If the input (vernier pattern plus noise) has no offset (S0) and the observer responded "no offset" (R0) for that particular
noise image, the number (feature) is attributed to the class S0R0. The three other classes are obtained by analogy.
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Figure 4: Schematic distributions of features sorted by observer’s response (left) and distributions of features assuming equivalent
internal noise (right).

The distributions schematically shown on the right of Figure 4 (S0R0*…) are obtained by sorting the same numbers (features) in a
different way. The procedure is illustrated in Figure 5.

Figure 5: Sorting of features by model response.

The features are first sorted to S0 and S1. It is then assumed that the observer decisions are based on the features plus some
internal noise, i.e., the distributions S0 and S1 plus the internal noise. The variance of the internal noise is estimated as

(3)

The observer d' (d'O) is defined by Equation (2). The model d' (d'M) is computed directly from the distributions S0 and S1 as the

normalized difference between the means, i.e., . The internal noise, with Gaussian distribution and variance
defined by Equation (3), is then added to the model outputs. In the next step, the distributions S0 and S1 are split into S0R0*,
S0R1*, S1R0*, and S1R1* by using the features plus noise. The important point here is that the original features are sorted by the
magnitudes of the features plus noise. Thus the distributions S0R0, S0R1, S1R0, S1R1 are based on the features sorted by
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observer’s  response.  The distributions S0R0*,  S0R1*,  S1R0*,  and S1R1* are based on the same features but  sorted by the
"model’s response", i.e., by the features plus noise. Finally, the measures for model-observer agreement for the two cases (no
offset S0 and vernier offset S1) are obtained as

(4)

.

In case of perfect agreement, these measures would be equal to one. Given a set of data, different model elements will influence
the measure. The main parameter is the separation (among S0R0 and S0R1 for the case S0, and S1R0 and S1R1 for case S1) that
can be achieved with given features, i.e., the nominators in Equation (4). This separation, which is specific to the features, is then
related to observer performance by the amount of internal noise. With increasing observer performance (higher d'O that leads to
less internal noise) the agreement decreases because, based on Equation (3), less noise has to be added to the features and the
separation of the * distributions increases. In other words, for a given separation between, say, S0R0 and S0R1 the value of A0
raises with higher internal noise, i.e., with lower d'O. Therefore, if the measures defined by Equation (4) are larger than one, the
possibility remains that the observers performed worse than they could have for some other reason. If the measure is significantly
less than one, the hypothesis that decisions have been based on the features plus some internal noise can be rejected. In this
case we would have to increase the amount of internal (model) noise for better agreement, but then, the model d' (now including
the internal noise) would be lower than the observer d’. In other words, it is easier to see how performance could be decreased by
something not related to the computations involved (features plus internal noise) than it is to see performance increased by such
factors, i.e., there is a asymmetry between agreement values below and above one.

Nevertheless, we prefer to observe how the measures of agreement vary with different parameters and different features instead of
relying only on the absolute values. This will make certain models more likely than others. To obtain the results shown in the next
section, the measures A0 and A1 have been computed 200 times with different internal noises and the means are plotted with error
bars (plus and minus 1.96 times the square root of the variance).

Feature Computation and Position Uncertainty6. 

The input images to the model consist of aligned and offset vernier patterns plus noise, i.e., precisely the images presented to the
observers. The results on position uncertainty have been obtained by first filtering the images with one of the kernels shown in
Figure 1 depending on the observer to be modeled. The filters were implemented by using the Fast Fourier Transform and the
Fourier Transform of the kernel in Equation (1). Then, the results of the filtering in the centers of the images (16x16 pixel) have been
multiplied with a Gaussian window. The width of the Gaussian had four different values of 0, 1, 2, and 3 pixels, zero width meaning
that only the center pixel was different from zero. After the Gaussian weighting the maximum in the 16x16 window was taken as
the feature.  This  algorithm was chosen as a  straightforward model  of  position uncertainty.  For  zero width,  the procedure is
equivalent to taking the scalar product of the input image and the kernel image (the linear model). Depending on the width of the
Gaussian window, the filter parameters were estimated such that the result of successive filtering with the kernel (differentiated
Gaussian) and the window (Gaussian) would remain constant. As a consequence, for an increasing width of the window, the
images were filtered with kernels of decreasing spatial extent. We distinguish two cases. If  the window is isotropic (isotropic
uncertainty) with increasing diameter of the Gaussian, then the filter kernels will shrink and change their shape (the ratio of height
to width).  If  the kernels are required to keep their  shape (and only shrink)  then the window must be anisotropic (anisotropic
uncertainty). These considerations are simply a consequence of a well-known theorem due to Pythagoras.

 

Orientation Uncertainty7. 

The next nonlinearity we investigated was orientation uncertainty (in addition to position uncertainty). The linear kernels shown in
Figure 1 have zero output to a straight,  horizontal  line, but respond if  the straight line is tilted (or curved, or discontinuous).
Suppose that the subjects base their decisions on mechanisms that detect the discontinuity introduced by the vernier offset
regardless of a small amount of tilt. To make a discontinuity detector that is uncertain about orientation, some type of orientation-
sensitive nonlinearity is needed. A possible implementation of a discontinuity detector is to select the minimum response from
kernels (1) differing in orientation but preliminary results show that this method does not increase agreement. The results shown in
the next section have been obtained by selecting the maximum response as described below. We still use the term "orientation
uncertainty" although it refers to the kernel domain.

We have computed the features for seven orientations as shown in Figure 6 (top). As with position uncertainty the results of the
filtering were multiplied by a Gaussian window which is now localized in space and orientation as shown in Figure 6 (bottom). The
maximum value is then taken as the feature. The kernels had spatial  parameters, which are optimal with respect to position
uncertainty - see Figure 8.

The results are plotted for constant position uncertainty and as a function of orientation uncertainty (sigma of the Gaussian in deg).
The different amounts of orientation uncertainty have been implemented by changing the orientation increment and keeping the
seven weights constant (0.32, 0.60, 0.88, 1.0, 0.88, 0.60, 0.32). Since the range of orientations is small, the shape of the kernels
has not been changed.
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Figure 6: Optimal kernels with seven different orientations (top) and Gaussian windows used to model position and orientation
uncertainty. For better illustration an orientation range of plus-minus 6 degrees is shown, which is 3 times the range found to be
optimal for observer PW in S0 - see Figure 10.

Results8. 

The linear model

Using the kernels shown in Figure 1 (which are optimized for each observer) the first question we address is, in which cases we
can reject the linear model (defined by these kernels) based on the measures in Equation (4). As mentioned before, the measures
are computed 200 times. For the observer DF the measure A1 was less than one for all 200 estimations. For observer PW, A0 was
less than one in all cases and A1 was larger than one in one case (0.5 %). Therefore it is likely that these two observers use some
other measure. This is in accordance with previous results.

Isotropic uncertainty

Position uncertainty was modeled as described in Section 6 and the results are shown in Figure 7 for the three observers BLB, DF,
and PW (top down) and the two conditions S0 and S1 (left and right). The agreement values are plotted with error bars and a
quadratic fit (the outlying value obtained for observer PW at three pixels is not considered because of the poor sampling at that
high resolution).

Figure 7: Model-observer agreement for different observers and stimulus conditions, and as a function of isotropic,position
uncertainty (measured in pixels).

The consistent trend is that the measures of agreement increase with position uncertainty. In some cases (observers DF and PW)
this leads to a better agreement (closer to one). For observer BLB the agreement departures from the optimal value of one, but the
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results do not reject position uncertainty.

To better illustrate the meaning of these results, the linear kernel, the Gaussian window of position uncertainty, and the optimal
kernel at that uncertainty are shown in Figure 8 for observers DF and PW. The parameter values of the optimal kernels are derived
from the quadratic fit, i.e., those values of position uncertainty have been selected, for which the fit of the agreement values equals
one. Note that the optimal kernels are similar (sy=0.75 arc min for DF and sy=0.67 for PW) for the two observers. This suggests that
a higher image-noise level, as for observer DF compared to PW, has a larger influence on the linear kernel than it has on the
optimal kernel, i.e., it increases position uncertainty.

 

Figure 8: Linear kernel (left), Gaussian for position uncertainty (middle), and the optimal kernel (right) that would yield the linear
kernel if convolved with the Gaussian in the middle. All images are shown for the cases DF, S1 (top) and PW, S1 (bottom). The
parameters of the Gaussians in the two windows are: sx=sy= 3.7 pixels (1.14 arc min) for DF, and sx=sy= 2.7 pixels (0.84 arc min)
for PW.

 

Anisotropic uncertainty

The results shown in Figure 9 have been obtained in analogy to those in Figure 7 but with anisotropic uncertainty. We note that the
improvement described for isotropic uncertainty cannot be obtained in this case and we conclude that isotropic uncertainty seems
more likely. We should note, however, that the important feature here is not the shape of the Gaussian window used before
maximum selection, but the fact that the filter kernel changes its shape in case of isotropic uncertainty - see Discussion below.
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Figure 9: Model-observer agreement for different observers and stimulus conditions, and as a function of anisotropic position
uncertainty (measured in pixel).

Orientation uncertainty

The results shown in Figure 7 cannot reject a simple nonlinear model (position uncertainty) but agreement values are still low for
subject PW in S0. Results obtained for PW with position and orientation uncertainty are shown in Figure 10. Note that the optimal
agreement value of one is reached at an uncertainty of plus-minus two degrees and that the variance is low (0.0002). The optimal
kernel (Figure 8 right) was used as described in Section 7. For observer DF, agreement A1 is 0.98 for the optimal kernel and
remains constant with orientation uncertainty.

Figure 10: Model-observer agreement for observer PW, and the two stimulus conditions, as a function of orientation uncertainty
(sigma of Gaussian in deg).

Discussion9. 

We have rejected the linear model suggested by the classification images by using a new measure of agreement and linear kernels
with parameters that have been estimated individually for each observer. These parameters show that the observers responding to
images with higher noise levels have larger kernels and a lower performance. We have then shown that part of the data under
consideration are consistent with the view that the observers base their decision on a measure derived from linear kernels, here
estimated as derivatives of  Gaussians,  and an additional  nonlinearity.  A possible nonlinearity is  position uncertainty.  Position
uncertainty as implemented here, however, is not the key feature since similar results can be obtained by just using the smaller
kernels and picking the center value (instead of the maximum in a region). Since a better agreement is obtained in case of isotropic
uncertainty it seems more likely that the shape of the kernel which is actually involved is not only smaller but also thinner (more
elongated horizontally than the kernels found as classification images). A further nonlinear effect, which remains beyond position
uncertainty, is that the agreements for the stimulus conditions S0 (no offset) and S1 (offset) differ, especially for observer DF.

Improvements obtained with position and orientation uncertainty suggest that observers might not rely on the precise positions of
the lines. Therefore, mechanisms that detect the vernier-offset discontinuity become more likely. Further experiments, in which
position and orientation of the vernier stimulus are varied, might help to clarify this issue.
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In conclusion, two observers seem to make use of kernels that are smaller than the ones derived from the classification images. If
these smaller kernels were used as linear kernels by the observers, we should not find the larger classification images. Therefore, a
nonlinearity must be involved which "spreads" the size of the kernels. Position and orientation uncertainty are likely candidates
with the virtue of simplicity but other nonlinearities are possible and it remains to be seen if the present or future data can further
differentiate among them.
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