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Abstract 

Understanding problem-solving strategies and how different 
tools support problem solving is an important but difficult 
problem in cognitive science. Cognitive modeling provides 
one way of understanding and predicting problem solving and 
the impact of supporting software tools. Modeling typically 
requires tradeoffs between fidelity of result and difficulty of 
model building. We used CogTool to explore how well a 
limited modeling approach can predict performance 
differences between two applications that support problem 
solving, specifically, for planning attitude of the International 
Space Station. We develop a modeling policy for modeling 
complex behavior using a coarse-level tool with reduced 
expressive power; then we compare model predictions with 
experimental data to assess its ability to identify performance 
differences across systems, tasks, and strategies. 
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Introduction 

Problem solving in the context of human-computer 

interaction both provides a resource for developing and 

testing cognitive models and generates complex situations 

of practical importance (Gray, 2008). The value of modeling 

problem solving outcomes and strategies in HCI is 

particularly high because empirical data may be impossible 

to collect at the point it would be most valuable. 

Specifically, a designer would like to know how design 

choices impact performance in advance of implementing a 

design. Thus, when performance data has its highest value, 

it can only be generated by model, not observation. 

The need to predict performance has motivated 

development of several tools for HCI (Card, Moran, & 

Newell, 1980; John et al., 2004; Kieras, 2006; Patton & 

Gray, 2010). Most tools support model construction by 

providing a framework in which low-level component 

actions can be combined to represent larger problem solving 

tasks. Such tools can vary in the granularity of the low-level 

components it provides, in whether predictions are 

stochastic or deterministic, and in the complexity of tasks 

the tool can effectively model. Models also differ in whether 

the model generates alternative strategies (Smith et al., 

2008) or more frequently, requires the modeler to specify 

the strategies to be modeled.   

In selecting a modeling approach there is typically a 

tradeoff between the fidelity of the resulting model and the 

complexity of building it. Often, the cost of learning and 

constructing models is too high to justify the benefits of 

estimating performance times.  CogTool (John et al., 2004; 

http://cogtool.hcii.cs.cmu.edu/) is an easy-to-use modeling 

tool that supports a simplified modeling process, while 

drawing on a well-vetted cognitive architecture, ACT-R 

(Anderson & Lebeire, 1998). The research reported here 

investigates how and how well a simplified modeling 

approach like that used by CogTool can predict performance 

times of complex problem-solving across systems, tasks, 

and strategies.  We develop a method, our modeling policy, 

for modeling complex behavior using a coarse-level tool 

with reduced expressive power. We evaluate the strengths 

and weaknesses of this method by comparing model 

predictions with experimental data.  

We first describe the work and tasks being modeled, 

planning by a NASA Mission Control group, Attitude 

Determination and Control (ADCO). Next we describe 

CogTool and why we selected it. We lay out the highlights 

of our modeling process, and describe a modeling policy, 

which we found helpful to consistently model a large and 

complex set of behaviors.  We present results of comparing 

predicted and actual performance times.  We conclude by 

discussing where and why modeling successes and failures 

occurred and what this suggests about using models to 

understand performance in complex HCI work.    

ADCO Planning Domain & Software 

ADCO controls the attitude (yaw, pitch, & roll) of the ISS 

(International Space Station). The operators monitor and 

command attitude in real-time and also develop plans in 

advance of real-time operations. ADCO plans specify the 

high-level activities (e.g. docking a Soyuz) and the actions 

(e.g. changes in control, maneuvering to a new attitude) that 

are needed to carry out the activity. ADCO currently uses 

legacy software (hereinafter called LEGACY; see Figure 1), 

which functions as a form-based text editor. Operators open 

a file for each activity and type in the parameters for each 

action within that activity. If an activity is rescheduled, the 

start and stop times of each action must be changed.  

After analyzing needs (Billman et al., 2010), a new 

prototype planning application (hereinafter called NEW; see 

Figure 2) was designed. NEW provides better 

representations and operations, particularly for temporal 

relations. NEW allows rescheduling an activity as a whole, 

by sliding the activity in the timeline or by typing in new 

start times in the editing panel. 

http://cogtool.hcii.cs.cmu.edu/
gravity
Text Box
http://csjarchive.cogsci.rpi.edu/Proceedings/2011/papers/0821/paper0821.pdf
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Figure 2. Screenshot of NEW system. Revision is done by 

dragging and dropping selected events on the timeline or 

by typing values in the panel on the right. 

Figure 1. Screenshot of LEGACY system. Revision is done 

in lower right panel, by typing values into text boxes. (The 

attribute values shown do not reflect a real event.) 

 The experimental data to which we compared model 

predictions was a subset of an extensive experiment in 

which users performed a series of checking and editing tasks 

over two days, separated by one week. A between-subjects 

experiment compared performance using the two systems; 7 

engineering students participated in LEGACY and 8 in 

NEW. We taught users about possible strategies to complete 

the tasks but left strategy choice open. In this paper, our 

experimental data draws from a particular set of editing 

tasks performed on the second day after 7-12 cumulative 

hours of practice on the system.   

The particular set of interest consisted of 12 tasks, 

requiring users to shift the times of various events: 1) one 

action, 2) one activity, 3) a set of actions within one activity, 

or 4) a set of actions that span activities. The first two 

changes are common and the second two less so. We model 

performance on these time-shift tasks.  Solving a “shift” 

problem requires the user to: 1) encode the problem; 2) 

select the event(s) to change, as one set or in subgroups 

depending on problem and strategy; 3) mentally compute 

the new start time; 4) set to this time. Steps 2-4 may iterate 

for subgroups. The user may check results or refer back to 

the problem description.  

Modeling Environment: CogTool 

Many tools have been developed to support modeling HCI 

tasks. One example is CogTool – a general purpose user 

interface prototyping tool that generates quantitative 

predictions of human performance, specifically response 

times of skilled performance. This paper is not an evaluation 

of CogTool, per se, but rather CogTool’s simplified 

approach to modeling behavior. We selected CogTool 

because it provided a good balance between required 

modeling effort and fidelity of result. It aims for simplicity 

by providing prepackaged interactive widgets (i.e. buttons, 

links) and transitions (i.e. click, hover) that connect between 

different states.  It aims for validity by deriving the behavior  

of each component from ACT-R at the perceptual, 

cognitive, and motor level to predict time on task.  The 

potential power of this modeling approach is that widgets 

and transitions can be linked together to generate 

predictions about complex sequences of behavior.  

   To build a model, a series of screenshots create a 

storyboard of frames.  Each frame is overlaid with 

interactive widgets, and transitions representing user actions 

link frames to represent moving from one state to another.  

Each model represents a specific sequence of actions (such 

as a particular strategy on a particular task) that are 

demonstrated by clicking through successive frames.  Based 

on the demonstration, CogTool constructs a Keystroke 

Level Model of how a skilled user would execute the task 

and it computes a predicted time.  The resulting model built 

from demonstration can be modified by inserting additional 

components such as “look-at” or “think”.   

   While CogTool is capable of modeling unusual interfaces, 

its strength lies in prototyping standard widgets like menus, 

and buttons.  For this experiment, constructing a model of 

LEGACY was very straightforward because the system 

utilized only standard widgets.  However, we encountered 

many challenges in modeling NEW because it used complex 

interactions not directly supported by the CogTool library.    

Modeling Policy 

Our goal was to build a set of models that are individually 

accurate and collectively consistent, without excessive 

tailoring. Because we are trying to show adequacy of a 

limited modeling approach, demonstrating accuracy and 

consistency is difficult for two reasons. First, CogTool 

generates a separate model for every combination of task 

and strategy, thus requiring a large set of models to cover 

the behavior of interest. Second, the interactions in NEW 

cannot be modeled with CogTool widgets in a standard way.  

This leaves room for case-by-case variation in how to 

extend or apply CogTool. Consistency and low-tailorabilty 

are important and instrumental to validity. If individual 

models are tailored for each circumstance they are unlikely 

to generalize, to predict as well as post-dict, or to provide a 

valid model. 



We formulated a modeling policy to help manage 

complexity, limit tailorability, and ensure consistency. The 

policy characterizes what situations fall within the scope of 

modeling and how models should be constructed scope. 

Scope of Modeling 

Users: Identifying what skill level the model represents is 

important for interpreting and applying its predictions.  

CogTool models the “skilled” user. To calibrate the models, 

each author performed blocks of simple tasks to generate 

various levels of skilled performance data.  Comparing this 

data to CogTool’s predictions, the appropriate skill level 

emerges where users are making few errors and are familiar 

with the system, but tasks require deliberation and are not 

automatic. We found that performance of our participants on 

the last block of the second day aligned with skill level 

appropriate for CogTool. 

Tasks: Understanding a model’s bounds in terms of task 

type and task complexity is important for deciding which 

tasks to model. With its library of vetted widgets and 

storyboard of discrete states, CogTool is best at modeling 

tasks using discrete “button pressing” actions, though it can 

be manipulated to represent continuous actions.  The task 

complexity that CogTool can model is bounded by the 

granularity of available widgets and transitions. In selecting 

tasks to model, we started with simple discrete tasks and 

progressed toward continuous tasks of greater complexity.      

Strategies: A strategy is an ordered set of actions to 

accomplish a task. Depending on the task, the set of 

strategies could range from a few to a very large number; 

thus, it is important to establish the scope of strategies to 

model. A CogTool model represents a single strategy for a 

single task as demonstrated by the modeler.  Hence, 

CogTool can model simple tasks with little strategy 

variation, but any larger strategy space falls beyond 

CogTool’s scope of practical usage. Recognizing CogTool’s 

limitations in representing strategy for complex tasks, we 

chose to focus on strategies we observed participants using.  

Cogtool only directly predicts response time, not reasoning, 

decision making, or strategy selection. In many cases, users 

shift to efficient strategies with practice. Thus, speed of use 

may be a powerful predictor of strategy choice. 

Environment: Characteristics of the system influence 

what types of interactions need to be modeled.  CogTool is 

good at modeling interactions in discrete and stable 

interfaces.  If users can change the display during 

interaction, modeling is more difficult; particularly, 

continuous change in the display is difficult for CogTool to 

model as it depends on a demonstration on a static display 

to capture and predict actions. We minimized this issue for 

CogTool by modeling selected items in which the display 

was not likely to vary across users or change within task.  

Requirements on Model-Building 

Our policy for model construction provides rules for 

breaking tasks down into component elements, and for how 

elements should be composed to model tasks and strategies.  

The components for standard interactions such as button 

presses have widgets provided and can be modeled easily. 

For nonstandard interactions, modelers need to provide a 

fixed model component for the interaction type.  Further, 

the modeler should construct models from existing 

components that are as similar as possible, to maximize 

consistency.  Here are two examples of rules for 

components in nonstandard interactions: 

Motor. The NEW system supports a drag-and-drop 

interaction in which the entity is dragged along a timeline 

and dropped at a specific time.  Because the end location is 

very specific, this task requires fine motor control.  Through 

the iterative modeling of experimenter-data on simple tasks, 

we developed a rule to model this end location as a very tiny 

widget; this was a modification made to the standard drag-

and-drop model.      

Perceptual. While most drag-and-drop interactions 

involve dragging an entity and dropping it at a visible target 

area, users in NEW have no visual cue for where to drop the 

entity.  They instead rely on a separate, dynamically 

updated numeric display that indicates their progress toward 

the target.  The standard drag-and-drop model was again 

modified to reflect this by inserting a “look-at” [time 

display] transition between the drag and the drop 

components.     

After the components have been specified, they can be 

composed into sequences predicting more complicated 

behavior.  Because CogTool components cannot be 

composed in parallel, it is important to select tasks that do 

not require parallel actions, or have overlapping actions that 

can be treated as sequential.  In our case, even though drag-

and-drop entails simultaneously moving the mouse while 

watching a target, the actions for this sequence could be 

reasonably stretched out and treated sequentially.    

When modeling strategies for simple tasks, select 

strategies that are as general as feasible.  This has the 

advantage that the strategy will be maximally reusable over 

task variations. We applied this policy to simplify models 

for typing in start times, by relying on an average strategy. 

Process for Adhering to Policy 

We used a structured method of incrementally extending 

and testing components. We verified the functionality of 

standard components in standard domains; we modeled new 

interactions by first testing single components in simple 

tasks and systematically incrementing the complexity of 

tasks, strategies, and components; we adjusted internal 

structure as needed.  When comparing user data to model 

predictions, we prioritized the model’s ability to predict 

patterns of difficulty, not absolute times, because modeling 

individual differences in CogTool increases complexity and 

requires tailoring individual models. Adhering to our 

modeling policy was critical for ensuring the validity and 

consistency of model components and their composition. 

Further, this makes the resulting model set and its 

predictions easier to understand.  

 



Figure 3. Times for users of NEW and LEGACY systems 

plotted against CogTool’s predicted times.  

 

Figure 4. Times on four item types for users of NEW 

plotted against CogTool’s predicted times. 

 
Modeling Goals 

Guided by the modeling policy, we constructed models at 

the system level, item level, and strategy level and 

compared them to experimental data. Generating models at 

these three levels of granularity provides insight into the 

practical value of modeling at different stages of the design 

process, and also provides a framework through which we 

can assess the strengths and weaknesses of the proposed  

modeling policy. Furthermore, how useful a model is 

depends on how well the model represents behavior. Having 

access to data from participants provides a way of assessing 

the validity of models.  

Modeling System Differences 

To compare the NEW and LEGACY systems, we modeled 

the two most common editing tasks – shifting an activity 

and shifting an action.  We used data from skilled and 

errorless users, the four fastest participants on each system.  

(One outlying data point of 140s was dropped.) We created 

two CogTool models for NEW and two for LEGACY, 

modeling one activity shift item and one action shift item.  

The model for each condition used the most common 

strategy.   

The predictions generated by the models were consistent 

with the user performance on NEW and LEGACY (Figure 

3).  NEW users (red & orange) were much faster than 

LEGACY users (blue & green) in both shifting activities 

and shifting actions and CogTool correctly predicted this.  

For NEW, activity shifts were slightly faster (users 13s 

(SE=1.8); CogTool 11s) than action shifts (users 16s 

(SE=1.5); CogTool 14s).  For LEGACY, activity shifts were 

dramatically longer (users 83s (SE=18.7); CogTool 85s) 

than action shifts (users 28s (SE=4.8); CogTool 29s).  

We were interested in CogTool’s ability to post-dict 

overall performance difference between systems (though we 

had just four points to compare).  Overall, there was a high  

correlation (r=0.999) between CogTool’s predicted times 

and the experimental data in performing activity shifts and 

action shifts across systems.  This affirms CogTool’s ability 

to post-dict dramatic differences between two systems both 

on an absolute and relative scale.     

Modeling Item Type Differences 

To determine CogTool’s ability to predict differences item 

types, we compared experimental data of four item types in 

NEW to their corresponding models.  These four types were 

shifting actions, activities, actions within an activity, and 

actions across activities. We modeled NEW because it is 

both of practical interest and of greater complexity.  We 

used data from the four fastest errorless users on NEW. 

(One outlying data point of 108s was dropped.)       

We created CogTool models for each type of item. Each 

model used the strategy of the overall fastest user for the 

entire block; these strategies were commonly shared by 

other fast users.  The fastest strategy for each task happened 

to be selecting the entities and editing the start times by 

typing in the details pane.  In line with the modeling policy, 

we maintained consistency by modeling all time edits using 

the backspace key followed by typing in digits.   

     Average user performance was still highly correlated 

with the models’ prediction times by item type (r=0.945) 

(see Figure 4). However, the order of difficulty was 

imperfectly predicted. For frequent items, CogTool 

correctly predicted that action shifts (users 13s (SE=1.8); 

CogTool 11s) would take longer than activity shifts (users 

16s (SE=1.5); CogTool 14s). For the less typical items, 

CogTool’s predictions were reversed (for actions: users 38s 

(SE=4.5); CogTool 40s versus for activities: users 47s 

(SE=4.4); CogTool 36s).  

   Despite the switched order for two of the item types, the 

values generated by the four CogTool models were broadly 

consistent with the experimental values for the four types of 



Figure 6. Average user times for strategy vs predicted time 
Figure 5. Left: Predicted choices: only fastest strategies chosen.  

Right: Actual strategy choices. Circle size shows number of users. 
 

 

 

items.  This shows that CogTool can do an adequate job of 

predicting item type differences, especially for items that are 

structurally very different from each other.  The order 

reversal for two tasks indicates possible weaknesses in 

modeling complex tasks.  Two limitations of CogTool 

probably contribute to the failure to correctly predict the 

relative times of these two tasks. First, these tasks are more 

complex. As a result, there is greater variation in strategy 

even among skilled users, reducing the accuracy of 

modeling item difficulty with a single strategy. Second, 

CogTool models are purely mechanical and do not represent 

cognitive differences.  In this case, shifting between 

activities is more cognitively taxing than shifting within an 

activity because there are more parts to keep track of.  

CogTool could be tailored, post-hoc by increasing “think” 

operators as needed, but this is inconsistent with our 

predictive modeling policy. 

Modeling Strategy Differences 

Turning to a finer granularity of modeling, we were 

interested in CogTool’s modeling of strategy. First, we 

wanted to see if CogTool could predict strategy choice, 

from a collection of identified strategies.  That is, is the 

strategy that CogTool predicts to be most efficient, the 

strategy preferred by fast, practiced users? 

Second, we wanted to see how well CogTool could 

predict the actual times for those strategies.  In order to 

compare the efficacy of various strategies, we used data 

from all eight NEW participants on each of the four items 

(representing the four item types). We removed data for 

responses with errors, outlying times, or other irregularity 

(such as redoing).    

We then built models for each of these strategies using the 

Modeling Policy. Because CogTool cannot generate 

strategies, we created models post-hoc based on strategies 

chosen by users.  For each type of item, we modeled every 

strategy used to complete the item plus a few additional 

strategies that we had (incorrectly) expected would be used. 

A total of 24 models were created, varying from 4 for the 

simplest task to 9 for the most complex. We also tallied the 

overall frequency with which strategies were used.            

First, we wanted to see if CogTool could predict strategy 

selection.  We took the strategy times generated by each 

CogTool model and ordered them from fastest to slowest for  

each item type.  Because skilled users tend to shift toward 

faster times and CogTool can only predict time on task, we 

expected that if CogTool is a good predictor of strategy 

choice, most people would use strategies that CogTool rates 

as fast.  For example, all users might select the fastest 2 or 3 

strategies, as illustrated in the left panel of Figure 5.  

However, our findings showed that CogTool seldom 

predicted the use of strategies. For every item type, the 

strategies judged fastest by the CogTool model were not the  

ones commonly used (Figure 5, right panel). For the 

simplest items, the strategies that CogTool predicts are least 

efficient are the ones most chosen. For the more complex 

items, strategy choice is highly varied with little preference 

for strategies CogTool predicts to be fast. 

Second, for those strategies that were used, how well did 

CogTool predict the time to use a given strategy? For each 

strategy used by any of the 8 NEW users, we found the 

average time and correlated the average data with the time 

predicted by the model. In comparing the times of strategies 

produced by users to analogous times predicted by 

CogTool, the correlation is modest (r=0.546), as shown by 

the wide scatter in Figure 6.  (One dot may represent 

different numbers of users.) One key aspect of poor 

prediction is that all drag and drop strategies are lower than 

they should be.   

Discussion 

Summary of Results 

We modeled performance on planning tasks by users 

working with two very different planning systems: one a 

legacy system currently in use by a Mission Control group 



and one a new system designed to match the work structure. 

We compared CogTool models to experimental data at the 

system, item, and strategy levels. The core strength of our 

approach was that by selecting CogTool and following our 

modeling policy, it was feasible to represent and get time 

predictions for a varied set of problem solving situations.  

 The models could predict the large performance 

differences between the very different systems, which 

provide different interfaces, interactions, and strategies.  In 

addition, our models also provided reasonable correlations 

with data for different item types.  It predicted simple 

differences between items that had clearly different 

interactions (activity vs action shifts), but was not as 

successful in predicting item differences for more complex 

items with overlapping strategies and characteristics.  With 

respect to strategies, CogTool was not an adequate predictor 

of strategy choice selection nor did it do a good job of 

predicting strategy times.  

Value of Validation  

Detailed validation of a model in a complex work domain is 

difficult and rare (Gray, John, & Atwood, 1993). We 

selected a challenging work environment, which required 

interaction forms not previously supported in CogTool. For 

our model development, we vetted new components in 

simple models applied to one set of tasks and users (the 

authors), and applied this to a different, complex set of tasks 

and users (experiment subjects). Thus, we did not tailor the 

models to the data we sought to predict.  We succeeded in 

accurately modeling behavior at a coarse but not fine level.  

Successful prediction at a fine level would, indeed, be 

very useful from a practical perspective. It would be 

valuable to predict accurately and in advance what strategies 

are optimal, as we could then have taught these to users, to 

increase the likelihood that each system was being used to 

best advantage.  With fine-grained accuracy, modeling 

could also be used to adjust design; for example, there are 

tradeoffs in design of the timeline layout between precision 

and scale; accurate models would allow exploring design 

alternatives to find best configurations.  

Modeling Challenges 

Our modeling policy highlighted several broad modeling 

challenges. 1) Behavior-based models (such as CogTool) 

have difficulty modeling working memory burden, 

presumably because this is least directly controlled by the 

task. Our problems differed in difficulty computing target 

times (add an hour vs 25 min), which affected component 

times and whether users included checking operations. 

Limited modeling of WM restricts the ability to distinguish 

between systems that impose different working memory 

burdens, a critical need for software supporting problem 

solving. 2) Assessing when a model of a component will 

compose cleanly in a larger model is difficult. Though our 

drag & drop models fared well on our simple test-bed tasks, 

when this component was included in larger models, these 

consistently underpredicted times. 3) Identifying when 

components will compose cleanly, without interaction, is 

critical. Problems with drag & drop models may have 

stemmed from interaction with other processes in the more 

complex models.  While a richer modeling space can 

evaluate positive (e.g. parallel execution) and negative (e.g., 

competition for WM) interaction among components (Gray 

2008; Smith et al, 2008), these models target simpler 

behaviors and hence entail greater complexity in building up 

to models of problem solving behavior. 4) Modeling 

human-computer, or human-automation, interaction requires 

a good model of the device. The default model of 

responsiveness and precision of mouse movements may 

have been inadequate.  

Value of HCI Modeling  

Modeling human-computer interaction provides both 

practical results and a test-bed for evaluating and 

developing modeling methods.  Behavior here is constrained 

by the affordances of the interface, while still exhibiting a 

very rich range of problem solving phenomena. 
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