
Modeling Performance Differences across Systems, Tasks, and Strategies

Jessica Lee (jessica.c.lee@nasa.gov)
San Jose State University, NASA Ames Research Center, Mail Stop 262-4

Moffett Field, CA 943035-1000 USA

Dorrit Billman (dorrit.billman@nasa.gov)
San Jose State University, NASA Ames Research Center, Mail Stop 262-4

Moffett Field, CA 943035-1000 USA

Abstract

Understanding problem-solving strategies and how different
tools support problem solving is an important but difficult
problem in cognitive science. Cognitive modeling provides
one way of understanding and predicting problem solving and
the impact of supporting software tools. Modeling typically
requires tradeoffs between fidelity of result and difficulty of
model building. We used CogTool to explore how well a
limited modeling approach can predict performance
differences between two applications that support problem
solving, specifically, for planning attitude of the International
Space Station. We develop a modeling policy for modeling
complex behavior using a coarse-level tool with reduced
expressive power; then we compare model predictions with
experimental data to assess its ability to identify performance
differences across systems, tasks, and strategies.

Keywords: problem-solving, strategies, HCI, modeling.

Introduction

Problem solving in the context of human-computer

interaction both provides a resource for developing and

testing cognitive models and generates complex situations

of practical importance (Gray, 2008). The value of modeling

problem solving outcomes and strategies in HCI is

particularly high because empirical data may be impossible

to collect at the point it would be most valuable.

Specifically, a designer would like to know how design

choices impact performance in advance of implementing a

design. Thus, when performance data has its highest value,

it can only be generated by model, not observation.

The need to predict performance has motivated

development of several tools for HCI (Card, Moran, &

Newell, 1980; John et al., 2004; Kieras, 2006; Patton &

Gray, 2010). Most tools support model construction by

providing a framework in which low-level component

actions can be combined to represent larger problem solving

tasks. Such tools can vary in the granularity of the low-level

components it provides, in whether predictions are

stochastic or deterministic, and in the complexity of tasks

the tool can effectively model. Models also differ in whether

the model generates alternative strategies (Smith et al.,

2008) or more frequently, requires the modeler to specify

the strategies to be modeled.

In selecting a modeling approach there is typically a

tradeoff between the fidelity of the resulting model and the

complexity of building it. Often, the cost of learning and

constructing models is too high to justify the benefits of

estimating performance times. CogTool (John et al., 2004;

http://cogtool.hcii.cs.cmu.edu/) is an easy-to-use modeling

tool that supports a simplified modeling process, while

drawing on a well-vetted cognitive architecture, ACT-R

(Anderson & Lebeire, 1998). The research reported here

investigates how and how well a simplified modeling

approach like that used by CogTool can predict performance

times of complex problem-solving across systems, tasks,

and strategies. We develop a method, our modeling policy,

for modeling complex behavior using a coarse-level tool

with reduced expressive power. We evaluate the strengths

and weaknesses of this method by comparing model

predictions with experimental data.

We first describe the work and tasks being modeled,

planning by a NASA Mission Control group, Attitude

Determination and Control (ADCO). Next we describe

CogTool and why we selected it. We lay out the highlights

of our modeling process, and describe a modeling policy,

which we found helpful to consistently model a large and

complex set of behaviors. We present results of comparing

predicted and actual performance times. We conclude by

discussing where and why modeling successes and failures

occurred and what this suggests about using models to

understand performance in complex HCI work.

ADCO Planning Domain & Software

ADCO controls the attitude (yaw, pitch, & roll) of the ISS

(International Space Station). The operators monitor and

command attitude in real-time and also develop plans in

advance of real-time operations. ADCO plans specify the

high-level activities (e.g. docking a Soyuz) and the actions

(e.g. changes in control, maneuvering to a new attitude) that

are needed to carry out the activity. ADCO currently uses

legacy software (hereinafter called LEGACY; see Figure 1),

which functions as a form-based text editor. Operators open

a file for each activity and type in the parameters for each

action within that activity. If an activity is rescheduled, the

start and stop times of each action must be changed.

After analyzing needs (Billman et al., 2010), a new

prototype planning application (hereinafter called NEW; see

Figure 2) was designed. NEW provides better

representations and operations, particularly for temporal

relations. NEW allows rescheduling an activity as a whole,

by sliding the activity in the timeline or by typing in new

start times in the editing panel.

http://cogtool.hcii.cs.cmu.edu/
gravity
Text Box
http://csjarchive.cogsci.rpi.edu/Proceedings/2011/papers/0821/paper0821.pdf
Presented at the Meeting of the Cognitive Science Society 2011

Figure 2. Screenshot of NEW system. Revision is done by

dragging and dropping selected events on the timeline or

by typing values in the panel on the right.

Figure 1. Screenshot of LEGACY system. Revision is done

in lower right panel, by typing values into text boxes. (The

attribute values shown do not reflect a real event.)

 The experimental data to which we compared model

predictions was a subset of an extensive experiment in

which users performed a series of checking and editing tasks

over two days, separated by one week. A between-subjects

experiment compared performance using the two systems; 7

engineering students participated in LEGACY and 8 in

NEW. We taught users about possible strategies to complete

the tasks but left strategy choice open. In this paper, our

experimental data draws from a particular set of editing

tasks performed on the second day after 7-12 cumulative

hours of practice on the system.

The particular set of interest consisted of 12 tasks,

requiring users to shift the times of various events: 1) one

action, 2) one activity, 3) a set of actions within one activity,

or 4) a set of actions that span activities. The first two

changes are common and the second two less so. We model

performance on these time-shift tasks. Solving a “shift”

problem requires the user to: 1) encode the problem; 2)

select the event(s) to change, as one set or in subgroups

depending on problem and strategy; 3) mentally compute

the new start time; 4) set to this time. Steps 2-4 may iterate

for subgroups. The user may check results or refer back to

the problem description.

Modeling Environment: CogTool

Many tools have been developed to support modeling HCI

tasks. One example is CogTool – a general purpose user

interface prototyping tool that generates quantitative

predictions of human performance, specifically response

times of skilled performance. This paper is not an evaluation

of CogTool, per se, but rather CogTool’s simplified

approach to modeling behavior. We selected CogTool

because it provided a good balance between required

modeling effort and fidelity of result. It aims for simplicity

by providing prepackaged interactive widgets (i.e. buttons,

links) and transitions (i.e. click, hover) that connect between

different states. It aims for validity by deriving the behavior

of each component from ACT-R at the perceptual,

cognitive, and motor level to predict time on task. The

potential power of this modeling approach is that widgets

and transitions can be linked together to generate

predictions about complex sequences of behavior.

 To build a model, a series of screenshots create a

storyboard of frames. Each frame is overlaid with

interactive widgets, and transitions representing user actions

link frames to represent moving from one state to another.

Each model represents a specific sequence of actions (such

as a particular strategy on a particular task) that are

demonstrated by clicking through successive frames. Based

on the demonstration, CogTool constructs a Keystroke

Level Model of how a skilled user would execute the task

and it computes a predicted time. The resulting model built

from demonstration can be modified by inserting additional

components such as “look-at” or “think”.

 While CogTool is capable of modeling unusual interfaces,

its strength lies in prototyping standard widgets like menus,

and buttons. For this experiment, constructing a model of

LEGACY was very straightforward because the system

utilized only standard widgets. However, we encountered

many challenges in modeling NEW because it used complex

interactions not directly supported by the CogTool library.

Modeling Policy

Our goal was to build a set of models that are individually

accurate and collectively consistent, without excessive

tailoring. Because we are trying to show adequacy of a

limited modeling approach, demonstrating accuracy and

consistency is difficult for two reasons. First, CogTool

generates a separate model for every combination of task

and strategy, thus requiring a large set of models to cover

the behavior of interest. Second, the interactions in NEW

cannot be modeled with CogTool widgets in a standard way.

This leaves room for case-by-case variation in how to

extend or apply CogTool. Consistency and low-tailorabilty

are important and instrumental to validity. If individual

models are tailored for each circumstance they are unlikely

to generalize, to predict as well as post-dict, or to provide a

valid model.

We formulated a modeling policy to help manage

complexity, limit tailorability, and ensure consistency. The

policy characterizes what situations fall within the scope of

modeling and how models should be constructed scope.

Scope of Modeling

Users: Identifying what skill level the model represents is

important for interpreting and applying its predictions.

CogTool models the “skilled” user. To calibrate the models,

each author performed blocks of simple tasks to generate

various levels of skilled performance data. Comparing this

data to CogTool’s predictions, the appropriate skill level

emerges where users are making few errors and are familiar

with the system, but tasks require deliberation and are not

automatic. We found that performance of our participants on

the last block of the second day aligned with skill level

appropriate for CogTool.

Tasks: Understanding a model’s bounds in terms of task

type and task complexity is important for deciding which

tasks to model. With its library of vetted widgets and

storyboard of discrete states, CogTool is best at modeling

tasks using discrete “button pressing” actions, though it can

be manipulated to represent continuous actions. The task

complexity that CogTool can model is bounded by the

granularity of available widgets and transitions. In selecting

tasks to model, we started with simple discrete tasks and

progressed toward continuous tasks of greater complexity.

Strategies: A strategy is an ordered set of actions to

accomplish a task. Depending on the task, the set of

strategies could range from a few to a very large number;

thus, it is important to establish the scope of strategies to

model. A CogTool model represents a single strategy for a

single task as demonstrated by the modeler. Hence,

CogTool can model simple tasks with little strategy

variation, but any larger strategy space falls beyond

CogTool’s scope of practical usage. Recognizing CogTool’s

limitations in representing strategy for complex tasks, we

chose to focus on strategies we observed participants using.

Cogtool only directly predicts response time, not reasoning,

decision making, or strategy selection. In many cases, users

shift to efficient strategies with practice. Thus, speed of use

may be a powerful predictor of strategy choice.

Environment: Characteristics of the system influence

what types of interactions need to be modeled. CogTool is

good at modeling interactions in discrete and stable

interfaces. If users can change the display during

interaction, modeling is more difficult; particularly,

continuous change in the display is difficult for CogTool to

model as it depends on a demonstration on a static display

to capture and predict actions. We minimized this issue for

CogTool by modeling selected items in which the display

was not likely to vary across users or change within task.

Requirements on Model-Building

Our policy for model construction provides rules for

breaking tasks down into component elements, and for how

elements should be composed to model tasks and strategies.

The components for standard interactions such as button

presses have widgets provided and can be modeled easily.

For nonstandard interactions, modelers need to provide a

fixed model component for the interaction type. Further,

the modeler should construct models from existing

components that are as similar as possible, to maximize

consistency. Here are two examples of rules for

components in nonstandard interactions:

Motor. The NEW system supports a drag-and-drop

interaction in which the entity is dragged along a timeline

and dropped at a specific time. Because the end location is

very specific, this task requires fine motor control. Through

the iterative modeling of experimenter-data on simple tasks,

we developed a rule to model this end location as a very tiny

widget; this was a modification made to the standard drag-

and-drop model.

Perceptual. While most drag-and-drop interactions

involve dragging an entity and dropping it at a visible target

area, users in NEW have no visual cue for where to drop the

entity. They instead rely on a separate, dynamically

updated numeric display that indicates their progress toward

the target. The standard drag-and-drop model was again

modified to reflect this by inserting a “look-at” [time

display] transition between the drag and the drop

components.

After the components have been specified, they can be

composed into sequences predicting more complicated

behavior. Because CogTool components cannot be

composed in parallel, it is important to select tasks that do

not require parallel actions, or have overlapping actions that

can be treated as sequential. In our case, even though drag-

and-drop entails simultaneously moving the mouse while

watching a target, the actions for this sequence could be

reasonably stretched out and treated sequentially.

When modeling strategies for simple tasks, select

strategies that are as general as feasible. This has the

advantage that the strategy will be maximally reusable over

task variations. We applied this policy to simplify models

for typing in start times, by relying on an average strategy.

Process for Adhering to Policy

We used a structured method of incrementally extending

and testing components. We verified the functionality of

standard components in standard domains; we modeled new

interactions by first testing single components in simple

tasks and systematically incrementing the complexity of

tasks, strategies, and components; we adjusted internal

structure as needed. When comparing user data to model

predictions, we prioritized the model’s ability to predict

patterns of difficulty, not absolute times, because modeling

individual differences in CogTool increases complexity and

requires tailoring individual models. Adhering to our

modeling policy was critical for ensuring the validity and

consistency of model components and their composition.

Further, this makes the resulting model set and its

predictions easier to understand.

Figure 3. Times for users of NEW and LEGACY systems

plotted against CogTool’s predicted times.

Figure 4. Times on four item types for users of NEW

plotted against CogTool’s predicted times.

Modeling Goals

Guided by the modeling policy, we constructed models at

the system level, item level, and strategy level and

compared them to experimental data. Generating models at

these three levels of granularity provides insight into the

practical value of modeling at different stages of the design

process, and also provides a framework through which we

can assess the strengths and weaknesses of the proposed

modeling policy. Furthermore, how useful a model is

depends on how well the model represents behavior. Having

access to data from participants provides a way of assessing

the validity of models.

Modeling System Differences

To compare the NEW and LEGACY systems, we modeled

the two most common editing tasks – shifting an activity

and shifting an action. We used data from skilled and

errorless users, the four fastest participants on each system.

(One outlying data point of 140s was dropped.) We created

two CogTool models for NEW and two for LEGACY,

modeling one activity shift item and one action shift item.

The model for each condition used the most common

strategy.

The predictions generated by the models were consistent

with the user performance on NEW and LEGACY (Figure

3). NEW users (red & orange) were much faster than

LEGACY users (blue & green) in both shifting activities

and shifting actions and CogTool correctly predicted this.

For NEW, activity shifts were slightly faster (users 13s

(SE=1.8); CogTool 11s) than action shifts (users 16s

(SE=1.5); CogTool 14s). For LEGACY, activity shifts were

dramatically longer (users 83s (SE=18.7); CogTool 85s)

than action shifts (users 28s (SE=4.8); CogTool 29s).

We were interested in CogTool’s ability to post-dict

overall performance difference between systems (though we

had just four points to compare). Overall, there was a high

correlation (r=0.999) between CogTool’s predicted times

and the experimental data in performing activity shifts and

action shifts across systems. This affirms CogTool’s ability

to post-dict dramatic differences between two systems both

on an absolute and relative scale.

Modeling Item Type Differences

To determine CogTool’s ability to predict differences item

types, we compared experimental data of four item types in

NEW to their corresponding models. These four types were

shifting actions, activities, actions within an activity, and

actions across activities. We modeled NEW because it is

both of practical interest and of greater complexity. We

used data from the four fastest errorless users on NEW.

(One outlying data point of 108s was dropped.)

We created CogTool models for each type of item. Each

model used the strategy of the overall fastest user for the

entire block; these strategies were commonly shared by

other fast users. The fastest strategy for each task happened

to be selecting the entities and editing the start times by

typing in the details pane. In line with the modeling policy,

we maintained consistency by modeling all time edits using

the backspace key followed by typing in digits.

 Average user performance was still highly correlated

with the models’ prediction times by item type (r=0.945)

(see Figure 4). However, the order of difficulty was

imperfectly predicted. For frequent items, CogTool

correctly predicted that action shifts (users 13s (SE=1.8);

CogTool 11s) would take longer than activity shifts (users

16s (SE=1.5); CogTool 14s). For the less typical items,

CogTool’s predictions were reversed (for actions: users 38s

(SE=4.5); CogTool 40s versus for activities: users 47s

(SE=4.4); CogTool 36s).

 Despite the switched order for two of the item types, the

values generated by the four CogTool models were broadly

consistent with the experimental values for the four types of

Figure 6. Average user times for strategy vs predicted time
Figure 5. Left: Predicted choices: only fastest strategies chosen.

Right: Actual strategy choices. Circle size shows number of users.

items. This shows that CogTool can do an adequate job of

predicting item type differences, especially for items that are

structurally very different from each other. The order

reversal for two tasks indicates possible weaknesses in

modeling complex tasks. Two limitations of CogTool

probably contribute to the failure to correctly predict the

relative times of these two tasks. First, these tasks are more

complex. As a result, there is greater variation in strategy

even among skilled users, reducing the accuracy of

modeling item difficulty with a single strategy. Second,

CogTool models are purely mechanical and do not represent

cognitive differences. In this case, shifting between

activities is more cognitively taxing than shifting within an

activity because there are more parts to keep track of.

CogTool could be tailored, post-hoc by increasing “think”

operators as needed, but this is inconsistent with our

predictive modeling policy.

Modeling Strategy Differences

Turning to a finer granularity of modeling, we were

interested in CogTool’s modeling of strategy. First, we

wanted to see if CogTool could predict strategy choice,

from a collection of identified strategies. That is, is the

strategy that CogTool predicts to be most efficient, the

strategy preferred by fast, practiced users?

Second, we wanted to see how well CogTool could

predict the actual times for those strategies. In order to

compare the efficacy of various strategies, we used data

from all eight NEW participants on each of the four items

(representing the four item types). We removed data for

responses with errors, outlying times, or other irregularity

(such as redoing).

We then built models for each of these strategies using the

Modeling Policy. Because CogTool cannot generate

strategies, we created models post-hoc based on strategies

chosen by users. For each type of item, we modeled every

strategy used to complete the item plus a few additional

strategies that we had (incorrectly) expected would be used.

A total of 24 models were created, varying from 4 for the

simplest task to 9 for the most complex. We also tallied the

overall frequency with which strategies were used.

First, we wanted to see if CogTool could predict strategy

selection. We took the strategy times generated by each

CogTool model and ordered them from fastest to slowest for

each item type. Because skilled users tend to shift toward

faster times and CogTool can only predict time on task, we

expected that if CogTool is a good predictor of strategy

choice, most people would use strategies that CogTool rates

as fast. For example, all users might select the fastest 2 or 3

strategies, as illustrated in the left panel of Figure 5.

However, our findings showed that CogTool seldom

predicted the use of strategies. For every item type, the

strategies judged fastest by the CogTool model were not the

ones commonly used (Figure 5, right panel). For the

simplest items, the strategies that CogTool predicts are least

efficient are the ones most chosen. For the more complex

items, strategy choice is highly varied with little preference

for strategies CogTool predicts to be fast.

Second, for those strategies that were used, how well did

CogTool predict the time to use a given strategy? For each

strategy used by any of the 8 NEW users, we found the

average time and correlated the average data with the time

predicted by the model. In comparing the times of strategies

produced by users to analogous times predicted by

CogTool, the correlation is modest (r=0.546), as shown by

the wide scatter in Figure 6. (One dot may represent

different numbers of users.) One key aspect of poor

prediction is that all drag and drop strategies are lower than

they should be.

Discussion

Summary of Results

We modeled performance on planning tasks by users

working with two very different planning systems: one a

legacy system currently in use by a Mission Control group

and one a new system designed to match the work structure.

We compared CogTool models to experimental data at the

system, item, and strategy levels. The core strength of our

approach was that by selecting CogTool and following our

modeling policy, it was feasible to represent and get time

predictions for a varied set of problem solving situations.

 The models could predict the large performance

differences between the very different systems, which

provide different interfaces, interactions, and strategies. In

addition, our models also provided reasonable correlations

with data for different item types. It predicted simple

differences between items that had clearly different

interactions (activity vs action shifts), but was not as

successful in predicting item differences for more complex

items with overlapping strategies and characteristics. With

respect to strategies, CogTool was not an adequate predictor

of strategy choice selection nor did it do a good job of

predicting strategy times.

Value of Validation

Detailed validation of a model in a complex work domain is

difficult and rare (Gray, John, & Atwood, 1993). We

selected a challenging work environment, which required

interaction forms not previously supported in CogTool. For

our model development, we vetted new components in

simple models applied to one set of tasks and users (the

authors), and applied this to a different, complex set of tasks

and users (experiment subjects). Thus, we did not tailor the

models to the data we sought to predict. We succeeded in

accurately modeling behavior at a coarse but not fine level.

Successful prediction at a fine level would, indeed, be

very useful from a practical perspective. It would be

valuable to predict accurately and in advance what strategies

are optimal, as we could then have taught these to users, to

increase the likelihood that each system was being used to

best advantage. With fine-grained accuracy, modeling

could also be used to adjust design; for example, there are

tradeoffs in design of the timeline layout between precision

and scale; accurate models would allow exploring design

alternatives to find best configurations.

Modeling Challenges

Our modeling policy highlighted several broad modeling

challenges. 1) Behavior-based models (such as CogTool)

have difficulty modeling working memory burden,

presumably because this is least directly controlled by the

task. Our problems differed in difficulty computing target

times (add an hour vs 25 min), which affected component

times and whether users included checking operations.

Limited modeling of WM restricts the ability to distinguish

between systems that impose different working memory

burdens, a critical need for software supporting problem

solving. 2) Assessing when a model of a component will

compose cleanly in a larger model is difficult. Though our

drag & drop models fared well on our simple test-bed tasks,

when this component was included in larger models, these

consistently underpredicted times. 3) Identifying when

components will compose cleanly, without interaction, is

critical. Problems with drag & drop models may have

stemmed from interaction with other processes in the more

complex models. While a richer modeling space can

evaluate positive (e.g. parallel execution) and negative (e.g.,

competition for WM) interaction among components (Gray

2008; Smith et al, 2008), these models target simpler

behaviors and hence entail greater complexity in building up

to models of problem solving behavior. 4) Modeling

human-computer, or human-automation, interaction requires

a good model of the device. The default model of

responsiveness and precision of mouse movements may

have been inadequate.

Value of HCI Modeling

Modeling human-computer interaction provides both

practical results and a test-bed for evaluating and

developing modeling methods. Behavior here is constrained

by the affordances of the interface, while still exhibiting a

very rich range of problem solving phenomena.

Acknowledgements

Research was funded by the Human Research Program,

Space Human Factors Engineering Project, NASA.

References

Anderson, J. R. & Lebiere, C. (1998). The Atomic Components of

Thought, Hillsdale, NJ: Lawrence Erlbaum Associates.

Billman, D., Arsintescu, L., Feary, M., Lee, J., Smith, A., &

Tiwary, R. (In Press). Benefits of Matching Domain Structure

for Planning Software: The Right Stuff. Paper presented at the

Proceedings of the ACM CHI Conference on Human Factors in

Computing Systems.

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of

human-computer interaction. Hillsdale, N.J.: L. Erlbaum

Associates.

Gray, W. D. (2008). Cognitive modeling for cognitive engineering.

In R. Sun (Ed.), The Cambridge handbook of computational

psychology. New York: Cambridge University Press.

Gray, W., John, B., & Atwood, M. (1993). Project Ernestine:

Validating a GOMS analysis for predicting and explaining real-

world task performance. Human Computer Interaction, 8(3),

237-309.

John, B. E., Prevas, K., Salvucci, D. D., & Koedinger, K. (2004).

Predictive human performance modeling made easy. In

Proceedings of the SIGCHI conference on Human factors in

computing systems (pp. 455-462). Vienna, Austria: ACM.

Kieras, D. (2006). A Guide to GOMS Model Usability Evaluation

using GOMSL and GLEAN4. Retrieved January, 2011. from

University of Michigan. Electrical Engineering and Computer

Science Department FTP site: ftp://www.eecs.umich.

edu/people/kieras/GOMS/NGOMSL_Guide. Pdf

Patton. E.W. & Gray, W.D. (2010). SANLab-CM: A tool for

incorporating stochastic operations into activity network

modeling. Behavior Research Methods, 42, 877-883.

Smith, M., Lewis, R., Howes, A., Chu, A., Green, C., & Vera, A.

(2008). More than 8,192 ways to skin a cat: Modeling behavior

in multidimensional strategy spaces. Paper presented at the

Proceedings of the 30th Annual Conference of the Cognitive

Science Society. Austin, TX: Cognitive Science Society.

