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Abstract

We describe a system designed to monitor the gaze of
a user working naturally at a computer workstation. The
system consists of three cameras situated between the key-
board and the monitor. Free head movements are allowed
within a three-dimensional volume approximately 40 cen-
timeters in diameter. Two fixed, wide-field "’face” cameras
equipped with active-illumination systems enable rapid lo-
calization of the subject’s pupils. A third steerable ’eye”
camera has a relatively narrow field of view, and acquires
the images of the eyes which are used for gaze estimation.
Unlike previous approaches [1] which construct an explicit
three-dimensional representation of the subject’s head and
eye, we derive mappings for steering control and gaze esti-
mation using a procedure we call implicit calibration. Im-
plicit calibration is performed by collecting a "’training set”
of parameters and associated measurements, and solving
for a set of coefficients relating the measurements back to
the parameters of interest. Preliminary data on three sub-
jects indicate an median gaze estimation error of approxi-
mately 0.8 degree.

1. Introduction

While some may question the truth of the English
proverb the eyes are the window to the soul,” it is generally
agreed that a person’s gaze is directed to the current object
of attention. Fixation sequences or scan-paths are therefore
of interest in the study of visual cognition, and applications
such as the design of human-computer interfaces. When
studying eye movements that occur during natural behav-
iors, it is important that the measurement system be unob-
trusive and not affect the behavior of the subject. In this
paper we present a remote gaze tracking system designed
with these goals in mind.

There are many methods available for tracking the gaze
of a human observer. Unfortunately, it is difficult to achieve
high accuracy in a system which is both non-invasive and
unobtrusive, two qualities which are imperative for the
study of natural behavior. Many high-accuracy systems re-
quire stabilizing the head, either with a chinrest or "bite-
bar” dental impression. While useful for many labora-
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tory studies, restraining movement of the head is undesir-
able when studying natural behavior[2, 3]. The search coil
technique[4, 5] provides high accuracy while allowing a
large range of natural movement, but is very invasive, re-
quiring placement of the coil on the surface of the eye.

Our system was in large part inspired by a similar sys-
tem described by Beymer and Flickner [1]. Like their sys-
tem, we employ a stereo pair of fixed, wide-field cameras
to perform an initial localization of the head. Unlike their
system (which employs a short-baseline off-the-shelf stereo
rig), our wide-field cameras are located on a large baseline
and are equipped with active illumninators for optical pupil-
finding [6, 7]. These cameras are fitted with 8mm focal
length lenses (providing a field of view of approximately
37 degrees), and provide images of the head and neck; we
refer to these as the “face” cameras.

Again similar to Beymer and Flickner, we use a mir-
ror galvonometer system to enable rapid tracking of head
movements by a narrow-field eye camera. But unlike their
system, we use a single narrow field eye camera instead of
two. Our narrow field camera is a miniature ”board cam-
era” equipped with a 25mm microlens, providing a field of
view of 14 degrees. This is a wider field of view than that
obtained in the Beymer and Flickner system, which hurts
system accuracy, but has other advantages. The small aper-
ture diameter of the microlens allows the use of smaller
mirrors, which have lower mechanical inertia and therefore
a faster settling time. The shorter focal length results in
greater depth-of-field, so dynamic focusing is not required.

The remainder of the paper is organized as follows: first,
we discuss the control of the steering system, including
the method of calibration and performance data; then, we
present our method for estimating the gaze target from im-
age measurement data, and data from three subjects; finally,
we discuss areas where we hope to make future improve-
ments.

2 Steering system

Before the host system can issue the steering commands,
it must somehow determine where it wants the system to
point. Once the eye has been acquired, small movements



Figure 1: Montage of dark- and bright-pupil field im-
ages (left and middle images resp.), with clipped difference
(right image). In addition to the pupils, artifacts resulting
from spatial misregistration of the fields and subject motion
can be seen.

can be detected in the image from the eye camera itself.
But when the subject first sits down in front of the system,
it can not be taken for granted that the eye camera will even
see part of their head, let alone image one of their eyes.
Therefore, two wide-field cameras are used to image the
subject’s head and determine the positions of the pupils.

2.1 Pupil detection with active illumination

Detection of the pupils in the face camera images is sim-
plified by the use of a special illumination system [6, 7, 8].
The illumination system consists of two banks of near-
infrared LED’s (Lite-On LTE-3376, 850 nm), arranged con-
centrically about the camera lenses. The inner ring produces
a bright pupil, while the outer ring produces a dark pupil
image. The two LED banks are energized alternately, with
changes triggered by the video sync pulses. The difference
image of the bright- and dark-pupil images is computed, re-
sulting in an image consisting primarily of only the pupils
(figure 1). The small disks are generally easy to discrimi-
nate from other artifacts, and the positions of their centroids
are the primary measurements which are output from this
stage.

2.2 Steering system calibration

The input data to the system are the locations of the
pupils in each of the face camera images. To transform
these measurements into the three-dimensional coordinates
of the pupil locations is a classic stereo vision problem, for
which many solutions exist (a good survey is provided by
Faugeras and Luong [9]), most of which require calibration
of each of the cameras [10, 11]. The key insight underlying

our method of "implicit” calibration is that it is not neces-
sary to know the three-dimensional location of the target in
order to set the steering angles, it is only necessary to know
on which line-of-sight of the steering system the target lies.
Of course, this is easily determined if the three-dimensional
coordinates are known, but only if the steering system itself
has been calibrated to the global three dimensional coordi-
nate system. Instead of calibrating the different subsystems
individually, our implicit calibration method solves for the
end-to-end relation between image and galvo coordinates,
without solving explicitly for either the camera calibration
parameters or the three dimensional coordinates of the tar-
gets. The calibration is performed by substituting a small
laser pointer in place of the steerable camera, and placing a
screen at various positions within the subject volume. Both
the laser and eye camera are mounted on kinematic base
plates (Newport BK-3), allowing them to be interchanged
rapidly while matching precise alignment. A mirror mount
(Newport P100-P2) is used to align the laser beam with the
camera’s line of sight. Precise positioning of the screen is
unnecessary; we place it by hand at several positions, so as
to sample the extremes of the working volume. The steering
mirrors are swept through a range of positions, and the po-
sitions of the images of the laser spot are measured in each
of the face camera images. The resulting "training set” of
measurements is then used to develop mappings from im-
age coordinates to scanner settings. We obtain good results
(aiming accurate to within a few pixels) by using a simple
second-order polynomial mapping.

The positions of the target in each of the face camera
images are measured for N positions of the steering system
and projection screen. Let p; be the pan coordinate on the
ith frame, and let ¢; be the tilt coordinate. (In practice, the
galvo "coordinates” are the unsigned 16 bit integers which
are sent to the D/A converter.) We wish to discover func-
tions f, and f; such that

pi = fp(TL,i, YL,y TR0 YR,i) 1)

and

ti = f(TL,i,YL,i» TR YR (2)
where zp, ; is the = coordinate of the target position in the
left face camera, etc. The coefficients of polynomial ap-
proximations to f,, are obtained by multiple regression. This
is done by constructing a matrix M, in which each row con-
tains a measurement vector, a constant element with value
1, and (optionally) higher order product terms formed from
the measurements. Let p be a column vector with elements
pi, q the vector of predictions f,, and let a is represent the
vector of unknown coefficients. By definition,

q = Ma. 3)

A vector of coefficients a is sought for which q approxi-
mates p as closely as possible. A least-squares solution is



obtained by
a=M'p, )

where M~ is the pseudo-inverse of M, obtained using the
singular value decomposition.

The number of columns of M increases quickly with an
increase in the order of polynomial terms included. If Ny, is
the number of measurements per observation (4 in our ex-
ample), then the total number of terms T in the polynomial
of degree k is given by:

Hi(zl (Nm +1)

T = k!

: (®)

In our case, there are 5 total coefficients in the linear
approximation, 15 for the quadratic, 35 for the cubic, and
70 for the quartic.

The number of coefficients sets a lower bound on the
number of observations that must be made in order to guar-
antee a solution. While we have not derived conditions that
must be met for a valid solution, it seems obvious that the
entire three-dimensional volume must be sampled; we ex-
pect that a valid solution will not be obtained if only a sin-
gle position of the projection screen is used, regardless of
its orientation. By analogy with the 1-dimensional case, we
conjecture that to obtain a valid solution of order m, it is
necessary that we collect data for at least m + 1 different
positions of the projection screen, and sample with a grid of
at least m + 1 by m + 1 for each screen position.

2.3 Simulation results

To estimate the maximum attainable accuracy possible
with the method, simulations were performed. The simula-
tions differ from the real situation in several (hopefully in-
significant) ways: first, the camera geometry is only a rough
approximation to the actual setup; second, in our model
steering system, the centers of rotation for pan and tilt are
coincident (in the actual scanner, the two mirrors are sepa-
rated by about a centimeter); and, finally, the face cameras
are modeled as pinhole cameras, with no lens distortion.
The geometry used in the simulation is illustrated in figure
2. For our model system, the origin of the coordinate system
is at the center of rotation of the scanning system, sending
the laser beam along the z axis for pan and tilt angles of 0.
The projection screen is modeled as a plane normal to the
z axis, which is placed at a series of linearly spaced depths
ranging from 30 to 60 centimeters. For each screen depth,
we cast a grid of rays, with azimuth and elevation sampled
linearly from -15 to 15 degrees. The results presented are
for an 11x11x11 sampling grid over depth, azimuth and ele-
vation; in a series of simulations not presented here, we ver-
ified that at this sampling density the results have reached
their asymptotic values.

Figure 2: Schematic diagram showing the geometry used in
the simulation.

The face cameras are modeled as pinhole cameras with
nodal points located on the z axis. They placed 30cm apart
and rotated inward 18 degrees about an axis passing through
their nodal point, parallel to the y axis (see figure 2). Their
positions are centered about a point 2.5cm to the left of the
galvonometer.

The points of intersection of the laser beam with the
screen are projected into the face camera images using per-
spective projection. The coordinates are converted to pixel
units assuming a sensor with a 0.25 inch diagonal, a resolu-
tion of 640x480, and a 9.5 mm focal length.

Out of the original 1331 samples, 678 fall inside the field
of view of both cameras. These measurements were used to
construct the 678x4 matrix M, as described in the previous
section. After computing the coefficients, the predictions
were generated. The prediction error was computed inde-
pendently for pan and tilt, and the average prediction error
was computed as the Pythagorean sum of the pan and tilt
errors. Figure 3 depicts the average (RMS) prediction er-
ror, as a function of polynomial order. When no noise is
added to the simulated measurements, a reduction of ap-
proximately one log unit is observed for each additional or-
der included in the approximation. The various curves in
figure 3 show the results for varying amounts of Gaussian-
distributed noise added to the simulated measurements. The
added noise has little effect on prediction error for the lin-
ear and quadratic cases, but eventually eliminates the ad-
vantages conveyed by the higher order polynomial approx-
imations.

The field of view and resolution of the eye camera can
be used to convert the angular errors plotted in figure 3 to
the number of pixels we would expect the target to be off-
center due to an aiming error. For order 2, the average error
is between 2 and 3 pixels. Because our area of interest is
on the order of 32 pixels in diameter, this amount of error
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Figure 3: Average (RMS) prediction error for simulated and
experimental data, as a function of the degree of the approx-
imating polynomial. The solid squares show the values for
the experimental data, while the open symbols show the re-
sults for various levels of Gaussian-distributed noise added
to the pixel coordinates of the target.

is acceptable, and the second order approximation provides
a good compromise between accuracy and computational
load.

2.4 Experimental results

Training data from the actual apparatus were obtained
by recording imagery from the cameras while the laser was
scanned over a hand-held screen. Scanner updates are syn-
chronized to the camera’s frame rate and are performed dur-
ing the vertical blanking, allowing us to acquire data at
60Hz. Small steps can be completed during the vertical
blanking interval, and so to minimize the maximum step
size we chose a retrace-free raster described by Koenderink
[12]. We use a 32x32 pattern having 1024 samples. The
laser was held in each position for two video fields, so each
scan required slightly more than 30 seconds. Five scans
were collected, at a variety of depths spanning to the ex-
pected range of head positions.

For each set of galvo and screen positions, and the posi-
tion of the laser spot was computed for each face camera im-
age by computing the centroid and area of all pixels exceed-
ing a predetermined threshold. The threshold was chosen to
slightly higher than the highest level of the (black) screen
under the ambient illumination. The centroid locations,
along with the corresponding galvo settings, were used to
compute a set of prediction coefficients, as described above,
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Figure 4: Reduction of systematic error with increasing
accuracy of the approximation is illustrated by the “error
slope.” Screen position A (resp. E) corresponds to the near-
est (resp. furthest) screen position.

With the coefficients, prediction errors were computed for
the training set. The results are shown in figure 3. We see
good agreement between the empirical data and the simu-
lated results for a 1 pixel standard deviation noise level.

In general, the target points near the edges of the training
volume are the ones where the largest prediction errors oc-
cur. We notice that for a given (fixed) position of the screen,
angular error vs. angle is well-fit by a straight line, with the
sign of the slope indicating expansion or contraction of the
reconstructed pattern compared to the original one. Figure 4
shows the azimuthal error slope as a function of azimuth for
the empirical data. Each curve in the figure represents a dif-
ferent regression order. For the linear predictor, we see that
there is a strong dependence of the errors on screen position.
The second order predictor still shows systematic errors for
the nearest screen position, but has done a fairly good job
of eliminating the systematic error for the other screen posi-
tions. For the third order predictor, the error slope is essen-
tially zero at all screen positions, indicating the systematic
errors are gone and the residuals are random. This obser-
vation helps us make sense of the results shown in figures
3: when there are systematic errors (as for order 1), we can
generally expect to obtain a better fit by increasing the poly-
nomial order, while no significant gains are obtained when
the residual errors are random (as for orders 3 and greater).

3 Gazeestimation

The steering system described above provides us with an
image from the narrow field camera that is roughly centered



Figure 5: The left panel shows the full image from the eye
camera image. A black square has been overlaid indicat-
ing the region of interest, centered on the glint found using
a Gaussian curvature operator. The right panel shows an
enlarged view of the region of interest, with the detected
locations of the glints and pupil indicated. Two glints are
produced by the active illuminators on the two face cam-
eras.

on an eye specified by the user. The field of view is large
enough that both eyes can be imaged by aiming the steering
system mid-way between the two eyes, but in this paper we
will describe gaze estimates based on measurements using
asingle eye. As in the previous section, here we will use an
implicit calibration method.

3.1 Region selection

If the head were stationary, then the targeting process
described above would ensure that the eye would appear in
the center of the eye camera image. The purpose of the ac-
tive tracking system, however, is to allow the user to move
freely. When the head moves, it is no longer possible to
keep the eye exactly centered in the eye camera image, be-
cause of the time lag between detection of the pupils in
the face camera images and the updating of the galvo po-
sitions. Assuming we process the data at the maximum rate
of 60Hz, after acquiring a pair of successive fields, the up-
date to the galvos will occur at the end of the following field.
In the absence of trajectory prediction, we expect the image
of the eye to be displaced from the center of the image by
the amount of motion that occurs in 17 milliseconds. There-
fore, the first step is to identify the subregion of the image
centered on the eye.

The bright reflections of the illuminators, or *glints’, are
the most conspicuous features and are therefore used for this
purpose. The glints are distinguished by two characteris-
tics: they are usually bright, and they are small and roughly
circular. With our setup, we observe two separate glints,
produced by two active illuminators on each of the face
cameras. We have obtained robust detection using a second

Figure 6: Exemple of eye orientation causing multiple glint
images due to reflection from the sclera.

derivative operator related to Gaussian curvature [13, 14].
We compute the simplified Gaussian curvature K using the
following formula:

K = GrzGyy — giy; (6)

where g;., gyy and g,, are image second derivatives.
This operator has zero output for regions which are con-
stant or vary in only one dimension, responds to curved
edges and corners, and has a large output for small spots.
The curvature is computed over a search region (which may
be smaller than the entire image), and the location of the
maximum is chosen as the center of a smaller subregion to
be used for subsequent processing (fig. 5).

3.2 Feature measurements

The primary features which we have used to date are the
positions of the two glints, and the location of the pupil.
The glints are located using the Gaussian curvature as de-
scribed above. However, a problem occurs for large gaze
deviations, for which the glint moves from the cornea to
the sclera (figure 6). Possible approaches to this problem
include detailed modeling of the reflections, or storing tem-
plate images for the difficult head/gaze regions. Another
possible approach would be to add additional illumination
sources which could be switched on and off depending on
the position of the head and the direction of gaze, such that
two or more good reflections from the cornea are always ob-
tained. This requires an alternate approach to galvo steering
with active illumination, which has been successfully done
by tracking the eye in the narrow-field camera image and
feeding back directly to the galvos.

Fast estimation of the pupil position and shape is per-
formed by fitting an ellipse to a set of boundary points. The
direct solution method of Pilu et al. [15] is used. The set of
boundary points is obtained as follows: a provisional center
is obtained searching for the darkest pixel, the image gra-
dient is computed along 12 radial vectors, and the location



Figure 7: Example of pupil mislocalization due to misiden-
tification of pupil boundary points. The image on the left
shows 12 points found by searching for the maximum gra-
dient along a radial line, including 2 which actually fall on
the edge of the eyelid. The right hand panel shows the out-
put of the ellipse fitting procedure, with substantial errors in
both the center location and aspect ratio.

of the maximum along each direction is taken as an edge
point. The main weakness with our current implementa-
tion is poor robustness with respect to outliers; for exam-
ple, it sometimes occurs that the maximum change occurs
at the edge of the eyelid instead of the pupil margin (figure
7). We are confident that improved outlier rejection can be
achieved using existing techniques [16].

3.3 Determination of mapping coefficients

Given a set of measurements of the image and the set-
tings of the steering system, we wish to determine the target
of gaze on a display screen. One approach to this prob-
lem is exemplified by the work of Beymer and Flickner [1],
who solve for the parameters of an explicit model of the
eye which give the best match to the data. Here we present
an alternative approach, which is analogous to our calibra-
tion of the steering system described above. We will look
for a polynomial function of the image measurements that
generate the screen coordinates of the fixation target. Im-
age measurements can be composed by the following data:
galvo settings, glint positions, and pupil position, size and
shape (eccentricity). The estimation of the coefficients of
that polynomial function requires a training period, where
subject-specific data is collected. Then we choose a set of
variables (measurements or derived measures), and solve
for regression weights mapping the variables to the coordi-
nates of the target location. This is analogous to the proce-
dure described above for calibration of the steering system,
but with a larger set of possible input variables, which may
not all be used.

A significant difference between the gaze estimation
problem and steering calibration is that for steering we
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Figure 8: Graphical rendering of recovered gaze estimates
for a typical sample. On the left, gaze estimates of the
training data are overlaid on a representation of the display
screen. The small squares (representing about 1 degree of
visual angle) indicate the locations of the fixation targets.
On the right is a plot of the corresponding test data. Gaze
estimates were computed using galvo settings, inter-glint
distance, and pupil-glint vector, and polynomial terms up
to order 3. Subject WHA.

knew the galvo coordinates that we were trying to predict.
In the case of gaze calibration, however, we do not know the
true gaze coordinates, because the subject generally makes
errors of fixation. We assume that the gaze coordinates are
equal to the target coordinates, and trust the random nature
of the errors will not introduce biases. Before predicting
the gaze coordinates, we must resolve two questions: first,
which input variables should be used? Second, for a given
set of inputs, which polynomial order is necessary to obtain
reliable estimates?

To collect the subject-specific data, each subject was in-
structed to fixate a series of targets on the screen compris-
ing a 4x4 grid. For each target, the subject was instructed
to maintain fixation while moving their head about slowly
in all three dimensions during a 2 second interval. The sub-
ject’s right eye was tracked by the galvos; the central portion
of the image from the eye camera was stored and for later
analysis. The resulting dataset generally had some outliers
arising from misidentified features. We attempted to auto-
matically remove these from the dataset using a number of
heuristics. For example, the slope of the line joining the two
glints should be roughly constant, and the pupil size and as-
pect ratio should be within certain limits). But, without a
detailed examination of the parameter values in combina-
tion with the images, it is hard to be sure that the dataset is
completely free of bad data.

3.4 Results

To estimate the performance of a set of parameters, first
we solve for the weights using random trials of 80% of the
recorded samples (the “training sets”). Then we use these
weights to make predictions for the remaining 20% of the
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Figure 9: Median test set error as a function of polyno-
mial order for for three subjects. The parameter set is made
of galvo settings, inter-glint distance, and pupil-glint vec-
tor. At the average viewing distance, 1 pixel corresponds to
about 0.025 degrees of visual angle.

recorded samples (the "testing sets”). A typical set of pre-
dictions based on a single sample trial of training data is
shown in figure 8. Polynomial terms up to order 3 were
included in the regression. We define the error to be the
distance between the estimated gaze position and the target
location, although we recognize that the actual gaze may
not always be directly on the target. Because of the out-
liers in the testing set, we decided to examine the median
error, which we believe is more representative of the poten-
tial accuracy of the system given more robust algorithms for
feature localization. The RMS error is on average twice as
big as the median error.

A number of different subsets of the measurements and
derived measures were investigated. Using all of the mea-
surements turned out to perform relatively poorly. Increas-
ing the number of input variables increases the number of
coefficients, especially for the higher polynomial orders (as
in equation 5), so when redundant variables are included,
the extra degrees of freedom end up fitting noise. Our best
results to date have been obtained using a relatively small
set of parameters consisting of the galvo settings, the inter-
glint distance, and the pupil-glint vector. (By the pupil-glint
vector, we mean a vector from the center of the pupil to the
mean location of the two glints.) Figure 9 shows the median
errors as a function of polynomial order for this parameter
set. Those errors were computed over 20 different random
trials for three subjects. The median errors obtained at or-
der 3 are equal to 25, 30 and 40 pixels (for WHA, XLCB
and JBM resp.). On a 17” monitor with a resolution of

1024x1280, viewed at a distance of 60 cm, those median
errors correspond respectively to 0.63, 0.76 and 1.01 de-
grees. So for the moment, we estimate the precision of our
gaze tracker to 0.8 degree. In order to get a more reliable
estimate of that precision, we plan to test the system on a
larger number of people.

4 Futurework

While the mechanical aspects of our system are more-
or-less complete and satisfactory, much work remains on
the software side. Ultimately we hope to generate real-time
binocular gaze estimates at 60Hz. Our existing software is
coded in a high-level scripting language, which is conve-
nient for prototype development, but we anticipate recod-
ing certain key operations in C (or perhaps even assembly
language) to achieve the desired processing rates.

As described above, the system uses the pupil locations
from the wide-field face cameras to control the steering sys-
tem. We have also experimented with using the location of
the eyes within the narrow field eye camera. One advantage
of this approach is that, because of the higher magnification
provided by the eye camera, greater precision is possible. A
feature at a given image location can be moved to the center
of the image using a galvo displacement vector which is a
linear transformation of the image displacement vector.

In this paper, the direct mapping from measurements to
the parameters of interest was done using polynomial func-
tions, because an efficient solution method exists for obtain-
ing the coefficients. Neural networks can potentially pro-
vide an accurate implicit calibration capable of predicting
more complex nonlinear relations between the parameters
and the measurements, at the cost of more computation to
determine the weights (e.g. back-propagation [17]).

5 Conclusions

We have demonstrated a prototype of a remote gaze
tracker which allows free head movements within a three-
dimensional volume. Although the images of the eye which
are obtained have fairly low resolution, we are still able
to recover estimates of gaze with an average error of 0.8
degree. We hope to achieve further improvements in both
accuracy and robustness through improvements to the soft-
ware, but are pleased with the results obtained to date. Our
accuracy is comparable to that reported by Beymer and
Flickner [1], in spite of the reduced resolution of our eye
camera. This suggests that the direct estimation method de-
scribed here may have advantages over their model-based
approach, and also that their system may be capable of
higher accuracy that they have yet obtained. In future work



we hope to compare estimates obtained by both methods on
a single data set.
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