
Activity Tracking for Pilot Error Detection from Flight Data

Todd J. Callantine,
San Jose State University/NASA Ames Research Center, MS 262-4, Moffett Field, CA 94035, USA.

tcallantine@mail.arc.nasa.gov

Abstract: This paper presents an application of activity tracking for pilot error detection from flight
data. It describes the Crew Activity Tracking System (CATS), in-flight data collected from the NASA
Langley Boeing 757 Airborne Research Integrated Experiment System aircraft, and a model of B757
flight crew activities. It then presents an example of CATS detecting actual in-flight crew errors.

Keywords: human error detection, activity tracking, glass cockpit aircraft

Introduction
This paper describes an application of the Crew Activity Tracking System (CATS) that could
contribute to future efforts to reduce flight crew errors. It demonstrates how CATS tracks crew
activities to detect errors, given flight data and air traffic control (ATC) clearances received via
datalink. CATS implements a so-called ‘intent inference’ technology, called activity tracking, in which
it uses a computational ‘engineering’ model of the operator’s task, together with a representation of the
current operational context, to predict nominally preferred operator activities and interpret actual
operator actions.

CATS was originally implemented to track the activities of Boeing 757 (B757) ‘glass cockpit’ pilots,
with a focus on automation mode errors (Callantine and Mitchell, 1994). The CATS activity tracking
methodology was validated as a source of real-time knowledge about B757 automation usage to
support a pilot training/aiding system (Callantine, Mitchell, and Palmer, 1999). CATS has since
proven useful as an analysis tool for assessing how operators use procedures developed to support new
operational concepts (Callantine, 2000). It also serves as a framework for developing agents to
represent human operators in incident analyses and distributed simulations of new operational concepts
(Callantine, 2001a).

The research described here draws in large part from these earlier efforts. In particular, the CATS model
of B757 flight crew activities has been expanded and refined. The representation of operational context
used to reference the model to predict nominally preferred activities has similarly undergone
progressive refinement. And, while the idea of using CATS to detect flight crew errors from flight data
is not new, this paper presents an example of CATS detecting a genuine, in-flight crew error from
actual aircraft flight data.

Using CATS to detect errors from flight data has several potential benefits (Callantine, 2001b). First,
CATS provides information about procedural errors that do not necessarily result in deviations, and
therefore would not otherwise be reported (cf. Johnson, 2000). Second, CATS enables airline safety
managers to ‘automatically’ incorporate information about a detected error into a CATS-based training
curriculum. Other pilots could ‘relive’ a high-fidelity version of the context in which another crew
erred. Increasing the efficiency and fidelity of information transfer about errors to the pilot workforce in
this way would likely yield safety benefits. A safety-enhancement program that uses CATS to detect
errors would improve training by requiring safety and training managers to explicate policies about
how an aircraft should preferably be flown.

The paper is organized as follows. It first describes the CATS activity tracking methodology, and
information flow in CATS. The paper then describes a CATS implementation for detecting pilot
errors. It first describes flight data obtained for this demonstration from the NASA Langley B757
Airborne Research Integrated Experiment System (ARIES) aircraft. It next describes two key
representations. The first is a portion of a CATS model of B757 flight operations. The second is a
representation of the constraints conveyed by ATC clearances that plays a key role in representing the
current operational context (Callantine, 2002b). An example from the available flight data then
illustrates CATS detecting pilot errors. The paper concludes with a discussion of future research
challenges. A lengthier report on this research appears in Callantine (2002a).

Activity Tracking
Activity tracking is not merely the detection of operational ‘deviations’ (e.g., ‘altitude below
glidepath’). The activity tracking methodology involves first predicting the set of expected nominal
operator activities for the current operational context, then comparing actual operator actions to these

predictions to ensure operators performed correct activities. In some situations, various methods or
techniques may be acceptable; therefore the methodology also includes a mechanism for determining
that, although operator actions do not match predictions exactly, the actions are nonetheless correct. In
this sense, CATS is designed to ‘track’ flight crew activities in real time and ‘understand’ that they are
error-free. As the example below illustrates, ‘errors’ CATS detects include those that operators
themselves detect and rapidly correct; such errors may nonetheless be useful to examine.

CATS identifies two types of errors: errors of omission, and errors of commission. It further identifies
errors of commission that result when the ‘right action’ is performed with the ‘wrong value.’ CATS
does not base these determinations on a ‘formulaic’ representation of how such errors would appear in a
trace of operator activities, nor attempt to further classify errors (e.g., ‘reversals’). This is because the
CATS model does not represent the ‘steps’ of procedures explicitly as ‘step A follows step B;’ instead
it represents procedures implicitly by explicitly specifying the conditions under which operators should
preferably perform each action. CATS predicts concurrent actions whenever the current context satisfies
conditions for performing two or more activities. CATS interprets concurrent actions whenever the
granularity of action data identifies them as such.

Like analysis techniques that rely on a ‘reflection’ of the task specification in a formal model of a
system (e.g., Degani and Heymann, 2000), CATS relies on a correctly functioning system to reflect
the results of actions (or inaction) in its state. CATS identifies errors by using information in the
CATS model that enables it to assess actions (or the lack thereof, in the case of omissions) in light of
the current operational context and the future context formed as a result of operator action (or inaction).
Thus, one might view the CATS error detection scheme as ‘closing the loop’ between a representation
of correct task performance and the controlled system, and evaluating feedback from the controlled
system to ensure it ‘jibes’ with correct operator activities. Given that the system is operating normally
and providing ‘good data,’ this is a powerful concept.

Crew Activity Tracking System (CATS): Figure 1 generically depicts information flow in CATS,
between a controlled system and CATS, and between CATS and applications based on it. CATS uses
representations of the current state of the controlled system and constraints imposed by the
environment (including performance limits on the controlled system) to derive the current operational
context. CATS then uses this representation to generate predictions from its model of operator
activities. CATS compares detected operator actions to its predicted activities, and it assesses actions
that it cannot immediately interpret as matching a prediction by periodically referencing the activity
model until it receives enough new context information to disambiguate possible interpretations.

CATS Implementation for Flight Data Error Detection
The following subsections specifically describe the implementation of CATS for detecting pilot errors
from flight data. The first is devoted to the flight data itself. The second illustrates a portion of the
CATS model, and the third describes how CATS generates the current operational context using a
representation of ATC clearance constraints. The CATS model fragment includes portions relevant to
an example of CATS detecting pilot errors presented in the fourth subsection. The following
subsections all assume some knowledge of commercial aviation and a B757-style autoflight system. A
detailed description of the Boeing 757 autoflight system mode usage is provided in Callantine,
Mitchell, and Palmer (1999); see Sarter and Woods (1995), and Wiener (1989) for discussions of mode
errors and automation issues.

StatesControlled System

Context

Activity Model

Constraints

Actions

Predictions

Interpretations

Integrated Aid/
Training System

CATS

Analysis Tool

Operator(s)

Environment

Figure 1 – Information flow within and between CATS and a generic human-
machine system, with applications to error analysis, aiding, and training.

B757 ARIES Flight Data: The NASA Langley B757 ARIES aircraft, with its onboard Data
Acquisition System (DAS), provided the flight data for this research (Figure 2). The DAS collects data
at rates in excess of 5 Hz, using onboard computers that perform sensor data fusion and integrity
checking. In future applications such functionality may be required within CATS, so that data can be
acquired directly from aircraft data busses. Table 1 shows the collection of values that comprise the
data set. The data include information from important cockpit systems. The rightmost column of Table
1 shows data CATS derives from the sampled values using filters. Included are crew action events
CATS derives from the values of control states. Target value settings on the MCP are derived with
‘begin’ and ‘end’ values, as in formal action specification schemes (cf. Fields, Harrison, and Wright,
1996). The present error-detection application focuses on interactions with the autoflight system MCP,

Figure 2 – Data Acquisition System (DAS) onboard the NASA B757 ARIES aircraft (inset).

Table 1 – Available B757 ARIES data, including derived states and action events (rightmost
column). The B757 ARIES DAS collects some variables from multiple sources.

Time variables
time
time1
time2
time3
Environmental information
total_air_temp
true_wind_dir
wind_speed
AC position/attitude
baro_alt
baro_corr
flight_path_angle
ground_speed
computed_airspeed
calibrated_airspeed
mach
magnetic_heading
magnetic_track_angle
pitch_angle
radio_altitude
roll_angle
true_track_angle
iru_potential_vert_speed
hybrid_lat
hybrid_lon
AC configuration/controls
left_engine_epr
right_engine_epr
flap_pos
speed_brake_handle
left_throttle_pos
right_throttle_pos
gross_weight
MCP target values
sel_mcp_altitude
sel_mcp_heading
sel_mcp_speed
sel_mcp_vert_speed
mcp_flare_retard_rate
sel_mcp_mach
MCP bank angle settings
bank_angle_lim_flaps_25
bank_angle_lim_flaps_15
bank_angle_lim_auto

NAV/COMM data
dme_range
left_dme_freq
right_dme_freq
left_dme_dist
right_dme_dist
left_vhf_freq
right_vhf_freq
FMC data
fmc_target_airspeed
fmc_selected_altitude
fmc_selected_airspeed
fmc_selected_mach
fmc_crz_altitude
fmc_eta
fmc_desired_track
fmc_wpt_bearing
fmc_cross_track_dist
fmc_vert_dev
fmc_range_to_alt
fmc_wide_vert_dev
AFDS states
ap_cmd_ctr_engd
ap_cmd_cen_gc_huh
ap_cmd_cen_gr_huh
left_ap_cmd_engd
ap_cmd_left_engd
right_ap_cmd_engd
ap_cmd_right_engd
ap_cmd_center_engd
ap_cws_center_engd
ap_cws_left_engd
ap_cws_right_engd
ap_in_control
fd_c_on
fd_fo_on
fd_on_c
fd_on_fo
AFDS switches
ap_cmd_center_reqd
ap_cmd_right_reqd
ap_cws_center_reqd
ap_cws_left_reqd
ap_cws_right_reqd
ap_cmd_left_reqd

AFDS modes
fl_ch_engd
hdg_hold_engd
hdg_sel_engd
land_2_green
land_3_green
alt_hold_engd
vnav_armed_engd
lnav_armed_engd
speed_mode_engd
thrust_mode_engd
loc_engd
vert_spd_engd
apprch_armed_engd
loc_armed_engd
back_course_armed_engd
glideslope_engd
MCP Speed display status
mcp_speed_display_blank
Autothrottle
at_armed
MCP switches
hdg_sel_reqd
hdg_hold_reqd
lnav_reqd
vnav_reqd
spd_reqd
apprch_reqd
loc_reqd
alt_hold_reqd
vs_mode_reqd
fl_ch_reqd
thrust_mod_reqd
IAS/Mach toggle
mach_toggled
Crew Alert levels
crew_alert_level_a
crew_alert_level_b
crew_alert_level_c
Status data
eec_valid
engine_not_out

FMC-A/T internal data
fmc_at_mach_mode_reqd
fmc_at_airspeed_mode_reqd
fmc_active_climb
fmc_climb_mode_reqd
fmc_active_cruise
fmc_con_mode_reqd
fmc_crz_mode_reqd
fmc_active_descent
fmc_display_annunc_on
fmc_eng_ident_1
fmc_eng_ident_2
fmc_eng_ident_3
fmc_eng_ident_4
fmc_eng_ident_5
fmc_eng_ident_6
fmc_eng_ident_7
fmc_eng_ident_8
fmc_eng_ident_9
fmc_eng_ident_10
fmc_ga_mode_reqd
fmc_idle_thr_reqd
fmc_msg_annunciated
throttle_retard_reqd
pitch_speed_control_engd
vnav_operational
lnav_operational
tmc_valid
VNAV submodes
fmc_vnav_speed_operational
fmc_vnav_path_operational
fmc_vnav_alt_operational
Thrust ratings
fmc_rating_1_reqd
fmc_rating_2_reqd
fmc_offset_annunciated
fmc_throttle_dormant_reqd
fmc_thr_mode_reqd
fmc_to_mode_reqd
req_1_valid_resv
req_2_valid_resv

Derived states
vert_speed
alt_cap_engaged
spd_win_auto_chng
ap_cmd_engd
Derived MCP actions
set MCP hdg
set MCP alt
set MCP spd
set MCP mach
set MCP vs
hdg sel press
hdg hold press
lnav press
vnav press
spd press
apprch press
loc press
alt hold press
vs mode press
fl ch press
thrust mode press
mach toggled
c ap cmd switch press
l ap cmd switch press
r ap cmd switch press
arm autothrottles
Other derived actions
tune left VHF
tune right VHF
set flaps
set spoilers

so it only uses some of the available data. Also, for the present application, cockpit observations
provide required clearance information.

CATS Model of B757 Navigation Activities: Figure 3 depicts a fragment of the CATS model used to
detect errors from B757 ARIES data. The model decomposes the highest level activity, ‘fly glass
cockpit aircraft,’ into sub-activities as necessary down to the level of pilot actions. Figure 3 illustrates
eight actions. All actions derivable from the data are included in the full model. Each activity in the
model is represented with conditions that express the context under which the activity is nominally
preferred, given policies and procedures governing operation of the controlled system. The
parenthesized numbers in Figure 3 refer to Table 2, which lists the ‘and-or trees’ that comprise these
rules. For comparison to other work that considers human errors involved with CDU manipulations
(e.g., Fields, Harrison, and Wright, 1997), the model fragment in Figure 3 shows just one of
numerous FMS configuration tasks. However, because the B757 ARIES flight data do not include
CDU data, modeling these tasks is not relevant to the present application.

Fly glass
cockpit
aircraft
(1)

Perform
takeoff roll (2)

Configure
aircraft (3)

Configure
autothrottles (4)

Configure
flight director
guidance (5)

Configure
autopilot (6)

Configure flight
management
system (7)

Navigate with
AP or FD
guidance (8)

Execute route
modification(s) (12)

Push EXEC key (33)

Perform
approach (10)

Configure
crossing
restriction
[Dimension =
VERT] (11)

Access CDU
LEGS page (15)

Push CDU
LEGS key (30)

Add to crossing
fix (17)

Enter crossing
restriction (16)

Type crossing
restriction value in
scratchpad (31)

Line select
crossing fix (32)

Navigate
Laterally
[Dimension
= LAT] (13)

Navigate
Vertically
[Dimension =
VERT] (14)

Configure
communications (9)

Set target
altitude (18)

Dial MCP altitude
knob (34)

Achieve/
maintain
altitude
(19)

Fly using FL
CH (22)

Engage FL
CH [mode =
FL CH] (27)

Push MCP
FL CH
switch (35)

Fly using
V/S (23)

Manage speed
[Dimension =
SPD] (24)

Adjust
speed
(28)

Dial MCP
speed knob
(36)

Hold altitude (20)

Fly profile (21)

Fly using
VNAV (25)

Engage
VNAV [mode
= VNAV] (29)

Push MCP
VNAV
switch (37)

Manage speed
[Dimension =
SPD] (26)

Figure 3 – Fragment of CATS model for B757 operations.

Representation of ATC Clearance Constraints for Context Generation: Environmental constraints
play a key role in defining the goals that shape worker behavior in complex sociotechnical systems
(Vicente, 1999). CATS also relies on a representation of environmental constraints to construct a
representation of the current operational context (see Figure 1). These factors motivated recent research
on an object-oriented representation of the constraints ATC clearances impose on flight operations
(Callantine, 2002b). Figure 4 shows the representation, which represents three key dimensions of
constraints: vertical, lateral, and speed. CATS employs a rule base that enables it modify this
constraint representation to reflect the constraints imposed (or removed) by each new ATC clearance.

CATS generates a summary of the current operational context suitable for evaluating the conditions
under which activities are preferred, in order to predict activities, and for determining whether an
operator action it did not expect is in error. Whenever the state or constraints change, CATS examines
salient relationships to generate a set of ‘context specifiers’ that summarizes the current operational
context; these are the descriptive clauses that appear in the conditions listed in Table 2. CATS also
uses the constraint representation to maintain a record of compliance with constraints. This is
important not only for context generation, but also for logging flight path deviations.

Table 2 – AND-OR trees of conditions under which the CATS model in Figure 3 represents
activities as ‘nominally preferred.’ CATS predicts an activity when its conditions, plus all

the conditions of its parent activities are satisfied by the current operational context.

(1) start-of-run

(2) (not above-runway-elevation)

(3) (and (not above-clean-speed) (not flight-surfaces-within-limits) (not gear-within-limits))

(4) (not autothrottle-armed)

(5) (not flight-director-on)

(6) [(and (not autopilot-cmd-mode-engaged) above-1000-feet-AGL)]

(7) (or (not programmed-route-within-limits) route-uplink-received)

(8) (and above-1000-feet-AGL (or autopilot-cmd-mode-engaged flight-director-on))

(9) (not comm-frequency-within-limits)

(10) (or approaching-glideslope-intercept-point approach-localizer-intercept-point)

(11) (not crossing-restriction-within-limits)

(12) route-modifications-within-limits

(13) (or autopilot-cmd-mode-engaged flight-director-on)

(14) (or autopilot-cmd-mode-engaged flight-director-on)

(15) (not cdu-page-LEGS)

(16) (and cdu-page-LEGS (not crossing-restriction-built))

(17) (and cdu-page-LEGS crossing-restriction-built)

(18) (not mcp-altitude-within-limits)

(19) (or (and (not current-altitude-within-limits) (not profile-within-limits-for-now)) expedite-needed)

(20) (and current-altitude-within-limits (not profile-within-limits-for-now))

(21) profile-within-limits-for-now

(22) (or (not altitude-close-to-target) expedite-needed)

(23) altitude-close-to-target

(24) (or fl-ch-engaged vs-engaged)

(25) profile-within-limits-for-now

(26) vnav-engaged

(27) (not fl-ch-engaged)

(28) (not target-speed-within-limits)

(29) (and (not vnav-engaged) (not capturing-required-altitude))

(30) (not cdu-page-LEGS)

(31) (not crossing-restriction-built)

(32) crossing-restriction-built

(33) route-modifications-within-limits

(34) (not mcp-altitude-within-limits)

(35) mcp-altitude-within-limits

(36) (not target-speed-within-limits)

(37) mcp-altitude-within-limits

Error Detection Example: The paper now presents an example of CATS detecting errors from B757
ARIES flight data collected during actual flight test activities. (A series of snapshots, including some
of the entire CATS interface, illustrate the example.) Although the data are real, in the flight test
environment, strict procedures about how the pilots should preferably fly the airplane are unreasonable.
Nonetheless, by imposing the model depicted in part in Figure 3, CATS was able to detect errors, and
the errors were not contrived. While the errors CATS detects are insignificant, because they in no way
compromised safety, the exercise nonetheless demonstrates the viability of CATS for error detection.
On the SUN Blade1000™ test platform, the CATS Java™ code processes the flight data at
approximately between twelve and twenty-two times real time.

Figure 5 shows the CATS interface at the start of the scenario (Scenario Frame 1). The crew has just
received a clearance to "climb and maintain 16,000 feet." CATS modifies its representation of ATC
clearance constraints accordingly, and using the updated context, predicts that the crew should set the
new target altitude on the MCP by dialing the MCP altitude knob.

In Scenario Frame 2 (Figure 6), a pilot instead pushes the VNAV switch. Because CATS has not
predicted this action, it cannot interpret the action initially. CATS instead continues processing data.
In Scenario Frame 3 (Figure 7), CATS has received enough new data to interpret the VNAV switch
press action. Had the action been correct, the autoflight system would have reflected this by engaging
the VNAV mode and commencing the climb. However, VNAV will not engage until a new target
altitude is set. To assess the VNAV switch press with regard to the current context, in which airplane
is still in ALT HOLD mode at 12,000 feet, CATS searches its model to determine if any parent
activities of the VNAV switch press contain information linking the action to a specific context.
CATS finds that the ‘engage VNAV’ activity should reflect VNAV mode engagement in the current
context (see Figure 3). Because this is not the case, CATS flags the VNAV switch press as an error.
Meanwhile, CATS still expects the crew to dial the MCP altitude knob.

In Scenario Frame 4 (Figure 8), a pilot does begin setting the MCP altitude. CATS interprets this
action as matching a current prediction, but with an incorrect value, as the altitude setting has not yet
reached 16,000. CATS does not flag this action as a ‘wrong value’ error, however, because it is only
the start of the altitude setting. CATS continues to predict ‘dial MCP altitude knob’ because the
context specifier ‘mcp-altitude-within-limits’ is not generated when the current MCP target altitude is
compared to the value specified by the representation of ATC constraints (see Figure 3 and Table 2).

Figure 4 – Snapshot of a CATS representation of environmental constraints
constructed from the filed flight plan and modified by ATC clearances.

In Scenario Frame 5 (Figure 9), one pilot pushes the VNAV switch a second time before the altitude
setting is complete. As the other pilot completes the altitude setting, CATS interprets the end of the
altitude setting action as matching its prediction. In Scenario Frame 6 (Figure 10), CATS detects that
a pilot has pressed the FL CH switch (perhaps to begin the climb in FL CH mode, since VNAV did
not engage). Because the MCP target altitude is now properly set, CATS predicts the crew should
engage VNAV, which is preferred according to the CATS model.

CATS detects a second FL CH switch press in Scenario Frame 7 (Figure 11). Perhaps a pilot
performed this action as ‘insurance’ to engage a mode to begin the climb. Because FL CH mode
engages, and this is reflected in CATS’ representation of the current context, CATS interprets both FL
CH switch presses as correct acceptable alternative actions. By this time, CATS has also flagged the
second VNAV switch press as an error. In the final frame of the scenario (Scenario Frame 8, Figure
12), the aircraft has begun climbing in FL CH mode. At this point the crew opts to engage VNAV
mode. At last, CATS detects the predicted VNAV switch press and interprets it as correct.

Conclusions and Future Research
The above example demonstrates that CATS can detect errors from flight data. Although the errors
CATS detects are inconsequential, this research indicates CATS can provide contextual information
useful for disambiguating the causes of deviations or unusual control actions that arise in incident or

Figure 5 – Scenario Frame 1: In response to a clearance to climb, CATS predicts the crew
should set the new target altitude on the MCP by dialing the MCP altitude knob.

Figure 6 – Scenario Frame 2: CATS detects that a crew member pressed the VNAV
switch instead of setting the MCP altitude.

accidents. Discoveries made using CATS can be incorporated into training curricula by connecting a
CATS-based training system to a simulator and allowing pilots to ‘fly’ under conditions that
correspond the actual context of an error-related event. Such capabilities are also useful outside the
airline arena as they support both fine-grained cognitive engineering analyses and human performance
modeling research.

Figure 7 – Scenario Frame 3: CATS cannot reconcile the VNAV switch press with
the current context, and therefore flags it as an error; CATS is still expecting the

crew to dial the MCP altitude knob.

Figure 8 – Scenario Frame 4: CATS detects a pilot starting to dial the MCP altitude, and
interprets it as matching its prediction, but with the wrong value (not an error, because the

action is only the start of the altitude setting).

Figure 9 – Scenario Frame 5: A second VNAV switch press, before the altitude setting is finished.

Using CATS with flight data collected at ‘continuous’ rates results in better performance. Event-based
data, such as those available from the NASA ACFS, require more complicated interpolation methods
to avoid temporal ‘gaps’ in the CATS representation of context that can adversely affect CATS
performance. Important directions for further research involve improving the coverage of flight data to
include the FMS and CDUs, as well as work on methods to automatically acquire ATC clearance
information. This research indicates that, if CATS has access to data with full, high-fidelity coverage

Figure 10 - Scenario Frame 6: CATS detects that the crew has now opted to engage FL CH
mode by pressing the FL CH switch. But because the altitude is now properly set, CATS now

predicts the crew should push the VNAV switch to engage VNAV (the preferred mode
according to the CATS model).

Figure 11 - Scenario Frame 7: CATS detects a second ‘insurance’ FL CH switch press, and interprets
it as acceptable as it did the first FL CH switch press.

Figure 12 - Scenario Frame 8: The crew opts to engage VNAV; CATS detects the predicted VNAV
switch press and interprets it as correct (elapsed time from Scenario Frame 1 is ~42 secs).

of the controlled system displays and controls, it can expose the contextual nuances that surround
errors in considerable detail.

Acknowledgements
This work was funded under the System Wide Accident Prevention element of the FAA/NASA
Aviation Safety Program. Thanks to the NASA Langley B757 Flight Test team for their assistance
with data collection.

References
Callantine, T. (2000). A glass cockpit crew activity analysis tool. SAE Technical Paper 200-01-5522.
Warrendale, PA: SAE International.

Callantine, T. (2001a). Agents for analysis and design of complex systems. Proceedings of the 2001
International Conference on Systems, Man, and Cybernetics, October, 567-573.

Callantine, T. (2001b). The crew activity tracking system: Leveraging flight data for aiding, training,
and analysis. Proceedings of the 20th Digital Avionics Systems Conference, 5.C.3-1—5.C.3-12 (CD-
ROM).

Callantine, T. (2002a). Activity tracking for pilot error detection from flight data. NASA Contractor
Report 2002-211406, Moffett Field, CA: NASA Ames Research Center.

Callantine, T. (2002b). A representation of air traffic control clearance constraints for intelligent agents.
Proceedings of the 2002 IEEE International Conference on Systems, Man, and Cybernetics,
Hammamet, Tunisia, October.

Callantine, T., and Mitchell, C. (1994). A methodology and architecture for understanding how
operators select and use modes of automation in complex systems. Proceedings of the 1994 IEEE
Conference on Systems, Man, and Cybernetics, 1751-1756.

Callantine, T., Mitchell, C., and Palmer, E. (1999). GT-CATS: Tracking operator activities in
complex systems. NASA Technical Memorandum 208788, Moffett Field, CA: NASA Ames Research
Center.

Degani, A. and Heymann, M. (2000). Some formal aspects of human automation interaction. NASA
Technical Memorandum 209600, Moffett Field, CA: NASA Ames Research Center.

Fields, R., Harrison, M., and Wright, P. (1997). THEA: Human error analysis for requirements
definition. Technical Report 2941997, York, UK: University of York Computer Science Department.

Fields, R., Wright, P., and Harrison, M. (1996). Temporal aspects of usability: Time, tasks and
errors. SIGCHI Bulletin 28(2).

Johnson, C. (2000). Novel computational techniques for incident reporting. In D. Aha & R. Weber
(Eds.), Intelligent Lessons Learned Systems: Papers from the 2000 Workshop (Technical Report WS-
00-03), Menlo Park, CA: AAAI Press, 20-24.

Sarter, N., and Woods, D. (1995). How in the world did we ever get into that mode? Mode error and
awareness in supervisory control. Human Factors, 31(1), 5-19.

Vicente, K. (1999). Cognitive work analysis: Toward safe, productive, and healthy computer-based
work. Mahwah, NJ: Lawrence Erlbaum Associates.

Wiener, E. (1989). The human factors of advanced technology ("glass cockpit") transport aircraft.
NASA Contractor Report 177528, Moffett Field, CA: NASA Ames Research Center.

