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ABSTRACT

This paper presents research on computational models
of pilot activities for detecting and simulating pilot errors,
and discusses how these techniques may be used to
enhance aviation safety. The discussion addresses
improved feedback about pilot errors to support training,
and the use of actual and simulated error data to
understand how errors may impact new air traffic
management concepts and flight deck automation. The
research is supported by the System-Wide Accident
Prevention project of the NASA Aviation Safety
Program.

INTRODUCTION

Understanding how human error impacts safety in
complex systems, and using this understanding to
improve training programs and design new systems, are
important goals of human factors research. Methods
aimed at characterizing errors, preventing them, and
mitigating their effects—including cognitive engineering,
human reliability analysis (HRA), human error
identification (HEI), and usability assessment
techniques—have received considerable attention.
Cognitive engineering seeks to provide the tools
necessary to “engineer systems that leverage the
unique capabilities for awareness that humans bring to
these systems against the complex problems that arise”
[12, p. 174]. HRA attempts to determine the probability
that an operator will fail to properly respond to an event
[14]. HEI techniques focus on characterizing observed
errors; “Simply put, error analysis is an essential
component of safety management” [24, p. 320]. All of
these methods generally address safety-critical
‘boundaries’ and human cognitive strengths and
limitations that bear on situation awareness.

Good designs enhance situation awareness. They
explicate ‘boundaries’ between safe and unsafe
performance to the interacting human and machine
agents that need to be aware of them. Robust systems
enable agents to easily identify when a safety-critical
boundary is in danger of being crossed, and take the
necessary action(s) to prevent it. For human operators,

errors play a crucial role in developing situation
awareness [12, 22, 23].

DESIGNING FOR SAFETY—Examining accidents and
incidents helps address error-related problems through,
for example, training targeted at preventing observed
errors. But designers face considerable challenges
developing, implementing, and evaluating the safety of
new designs. Future aviation and Air Traffic Management
(ATM) systems that implement new operational
concepts, for example, require new operator procedures
and automation to improve efficiency without sacrificing
safety and robustness (e.g, [19]). However, it is
practically impossible to apply cognitive engineering
methods such as cognitive task analysis to complex
systems like ATM at ‘design time’ [12]. In a similar vein,
Johnson criticizes HRA as lacking the proper scope and
predictive power to inform systems development. He
asserts among other things that such approaches fail to
take group interactions and contextual issues into
account [15]. Usability-oriented analyses, such as the
Cognitive Walkthrough [18] and the Technique for
Human Error Assessment (THEA) [11, 17] would also
benefit from a clear ‘starting point,’ with important safety-
critical interactions already identified.

SIMULATION-BASED APPROACHES — To avoid
problems with ‘paper and pencil’ analyses of complex
systems, research in domains like aviation and ATM has
relied primarily on simulation, particularly real time human-
in-the-loop (HITL) simulation, to collect data for analysis
with existing analysis methods (e.g., [19, 20]). However,
as the number of participants grows, the required
development effort, as well as the costs and logistical
issues associated with conducting such simulations, also
increase (e.g., [9]). Furthermore, analyzing data from a
large-scale simulation is time-consuming, and it may be
difficult to achieve the proper focus for the analysis
because of the large number of (intended and
unintended) experimental factors. Data that reveal
‘interesting’ interactions may receive undue attention to
the exclusion of other salient interactions that might also
arise in practice. Methods to reduce the analysis burden,
maintain consistency, and recognize the relative
importance of interactions are therefore needed.



Fast-time          simulations     ATM researchers have recently
turned to fast-time simulations with embedded agents
that represent human operators and automation (e.g., [5,
13, 21, 25]). While real-time HITL simulations enable
researchers to simulate only a few conditions per day,
fast-time simulations provide an opportunity to examine,
Monte Carlo fashion, data from numerous trials across
multiple conditions. Fast-time simulations are limited by
the fidelity of the simulated agents, but can be helpful for
exploring safety-critical boundaries and analyzing the
potential benefits of new concepts. They can also
provide a basis for selecting experimental conditions to
test in follow-on HITL studies. However, to support
design, methods are needed for systematically
simulating errors and examining their effects on safety.

DETECTING AND SIMULATING ERRORS—Against this
backdrop, this paper describes how a computational
model of a ubiquitous and reasonably well-understood
class of agents in the ATM system—pilots flying glass
cockpit aircraft—can serve several useful purposes,
including:

• Detecting errors that HITL simulation pilots make to
increase the effectiveness of pilot debriefings and
improve analyses, to support ATM system design.

• Systematically simulating pilot errors in fast-time
agent-based simulations of new ATM operational
concepts, to support safety analyses and HITL
simulation experimental design.

• Detecting errors that glass cockpit simulator pilots
make, and capturing the error context, to improve
training.

The pilot activity model may reflect current-day aircraft
automation and procedures—either for training
enhancement, or the design of near-term future ATM
systems that accommodate current-day aircraft.
Alternatively, the model may need to be expanded to
represent why and how operators should perform
activities using new automation and procedures. In either
case, the same model can support all of the above
purposes in a complementary manner.

This paper presents research that address pilot error
simulation and pilot error detection—using the same
model—within the Crew Activity Tracking System (CATS)
framework. CATS was initially developed to provide the
knowledge required by pilot aiding and training systems
[8] and has since been used as an analysis tool (e.g., [1,
7]) and as the basis for intelligent agents [5]. The paper
aims to show how the CATS model of pilot activities can
be leveraged to support safety enhancement in the
broader context of training and future ATM system
development research.

The remainder of the paper is organized as follows. It first
presents a generic CATS activity model. It then
describes how CATS can detect pilot errors with such a

model of pilot activities and discusses an example of
CATS detecting an error that might otherwise go
unreported. The paper then describes how simulated
pilot agents use the model, and presents a methodology
for systematically simulating precisely the sorts of errors
CATS detects. The paper then discusses implications of
this research for simulator-based training programs and
future ATM system design efforts.

CATS ACTIVITY MODEL

A CATS model is a model of operator activities tailored to
systems that have modes of operation (including, of
course, modern ‘glass cockpit’ aircraft). A CATS model
represents the ‘correct paths through the system’ at
multiple levels of abstraction, down to the level of
operator actions that correspond to various button
presses, dial settings, and data entries that an operator
can perform using the system’s interface. A CATS model
can be constructed for a single operator, or it can
represent the activities of multiple operators, such as a
two-person flight crew. This section provides an
overview of a CATS model in its generic form, and
describes the properties of a CATS model important for
constructing one.

A CATS model is normative, because it represents the
‘preferred’ methods for accomplishing required
functions. A CATS model also has descriptive qualities,
however, because it represents all the possible ways that
an operator can correctly accomplish required functions
(cf. [26]). A given airline may train pilots to use a specific
autopilot mode in a particular situation, such as the
Vertical Navigation (VNAV) mode for descents from
cruise altitude to 10,000 feet—this is a so-called
‘preferred method.’ However, a pilot may opt to descend
using a different mode, such as the Flight Level Change
(FL CH) mode. (Some future ATM concepts specify ‘one
right way’ of complying with certain clearances; a CATS
model can also represent ‘pure normative’ operations.)

Figure 1 shows the generic form of a CATS model. High-
level activities (referred to as ‘functions’) are supported
by generic methods for performing them, each of which
is preferred in different situations. (If a particular control is
not part of a preferred method in some situation, then
the question of why the interface includes it necessarily
arises.) Methods may share ‘common activities,’ as
shown in Figure 1. For example, whether a flight crew
chooses VNAV or FL CH mode to descend, they must
first ensure that a new target altitude is set. For new
interface designs, the hierarchy of activities in the CATS
model can end above the action level, to provide top-
down interface design guidance; the CATS model is
completed when the operator actions allowed by the
prototype interface are specified.

REPRESENTING OPERATIONAL CONTEXT — Each
activity in a CATS model contains conditions that
represent when the activity is ‘nominally preferred,’



represented as ‘AND-OR trees’ (rules) comprised of
Boolean-valued ‘context specifiers’ named to express
contextual information like operators do (Table 1 below
provides some examples). At any given time, a particular
set of context specifiers summarizes the current
operational context. Context is defined as salient states,
constraints, and key relationships between them. This
definition imparts a ‘constraint satisfaction’ flavor to
operator behavior. A variety of models are suitable for
generating the current set of context specifiers.
Previous implementations have typically used rules,
although Bayesian Belief Networks, fuzzy rules, or other
models may be used for resolving context.

REPRESENTING PROCEDURES, CONCURRENCY,
AND COGNITIVE ACTIVITIES — Given a current context,
evaluating the conditions in the CATS model yields the
current set of activities that the operators should
preferably perform. The CATS model says nothing about
which of two or more activities in the current set should
be performed first, simply that the current context
satisfies conditions for performing all of them. Historical
and predicted future values of states and constraints are
in some cases important, but as long as the current
context includes this information, the CATS model itself
is memoryless—no history information about past
activities is necessary.

The arrows in Figure 1 express that the CATS model can
represent procedures for controlling the system, in
addition to unordered activities. For example, ‘Common
Activity II.A’ precedes either ‘Method II.B’ or ‘Method II.C.’

True to the memoryless property, procedural
dependencies are represented via the AND-OR trees of
conditions in the model. Performing any procedural step
should produce a change that is reflected in the current
state of the controlled system and, in turn, in the current
operational context. When a pilot, for example, performs
a procedural step, the context changes such that the
next step of the procedure ‘enters the current set’ of
preferred activities. For example, performing ‘Common
Activity II.A’ should produce a change in context that
specifies that one of the different methods should
follow. Procedures that do not interact form separate
‘branches’ of the CATS model tree structure.

The CATS methodology views supervisory control
behavior as constraint satisfaction; the CATS model
represents a series of transformations from state and
constraint information into ‘what to do.’ While it is
designed to allow abstraction, to formulate useful models
in a reasonable period of time, a CATS model can include
cognitive, perceptual, or verbal activities to support
cognitive engineering analyses. The generic model in
Figure 1, for example, decomposes some activities into a
single child activity. This expresses the possibility that
some cognitive activities required to perform a given
activity may have been omitted from the model for
parsimony. (Intervening levels above actions may also be
omitted, i.e., actions can link directly to tasks in Figure 1.)
If the CATS model includes cognitive or perceptual
activities, expected ‘durations’ can be used to delay
prediction of the next procedural step.
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Function II

Function III
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Ac tion II.B.1.a.ii
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Subtask III.A.2.b
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Task III.A.2
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Figure 1. Generic CATS model structure.



MODEL OF BOEING 757 (B757) PILOT ACTIVITIES —
Figure 2 shows a fragment of a CATS model of B757
pilot activities developed according to the above
principles (another example appears in [1]). The model
decomposes the highest level activity, ‘fly glass cockpit
aircraft,’ into sub-activities as necessary down to the level
of pilot actions. Figure 2 illustrates eight actions. All
actions derivable from aircraft data are included in the
complete model. Each activity in the model is
represented with conditions (rules) that express the
context under which the activity is nominally preferred.
The parenthesized numbers in Figure 2 refer to Table 1,
which lists the AND-OR trees that comprise the
conditions.

Figure 2 illustrates how the alternative methods and
common activities shown in Figure 1 are manifest in the
B757 CATS model. The activities ‘achieve/maintain
altitude’ and ‘fly profile’ represent alternative methods
that support the ‘navigate vertically’ activity. The activity
‘set target altitude’ is an activity common to both
methods. The multiple methods structure appears
recursively at a lower level in the model, because ‘fly
using FL CH’ and ‘fly using V/S (Vertical Speed mode)’
both support the ‘achieve/maintain altitude’ activity.
‘Manage speed’ is an activity common to both of these
methods. A different ‘manage speed’ appears in support
of ‘fly profile,’ because speed management may be
performed in a different manner when flying an FMS

profile. The “DIMENSION’ indications are a way of
indicating to CATS which activities in the model are the
highest level activities that are supported by multiple
methods. Earlier versions fixed the level at which
methods (i.e., autoflight mode selections) were
represented, so such designators were not necessary
(see [8]). For comparison to research that considers
human errors involved with Flight Management System
(FMS) Control and Display Unit (CDU) manipulations
(e.g., [11]), the model fragment in Figure 2 also illustrates
one of numerous FMS configuration tasks. (This is for
illustration only, because the data used in the present
research do not include CDU action data.).

ACTIVITY TRACKING FOR ERROR
DETECTION

This section describes CATS, and how CATS uses the
B757 model to detect pilot errors. CATS implements a
methodology for activity tracking in a computer-based
system that has been validated to work in real and fast
time [3, 8]. Figure 3 depicts the CATS architecture and
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management

system (7)
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Push CDU
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SPD] (24)
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Figure 2. Fragment of a CATS model for B757
operations.

Table 1. AND-OR trees of conditions under which the
CATS model in Figure 2 represents activities as
‘nominally preferred.’ CATS predicts an activity when
its conditions—plus all the conditions of its parent
activities—are satisfied by the current operational
context.

(1) start-of-run

(2) (not above-runway-elevation)

(3) (and (not above-clean-speed) (not flight-surfaces-within-limits) (not gear-within-limits) )

(4) (not autothrottle-armed)

(5) (not flight-director-on)

(6) [ (and (not autopilot-cmd-mode-engaged) above-1000-feet-AGL ) ]

(7) (or (not programmed-route-within-limits) route-uplink-received )

(8) (and above-1000-feet-AGL (or autopilot-cmd-mode-engaged flight-director-on) )

(9) (not comm-frequency-within-limits)

(10) (or approaching-glideslope-intercept-point approach-localizer-intercept-point)

(11) (not crossing-restriction-within-limits)

(12) route-modifications-within-limits

(13) (or autopilot-cmd-mode-engaged flight-director-on)

(14) (or autopilot-cmd-mode-engaged flight-director-on)

(15) (not cdu-page-LEGS)

(16) (and cdu-page-LEGS (not crossing-restriction-built) )

(17) (and cdu-page-LEGS crossing-restriction-built)

(18) (not mcp-altitude-within-limits)

(19) (or (and (not current-altitude-within-limits)  (not profile-within-limits-for-now) ) expedite-needed )

(20) (and current-altitude-within-limits (not  profile-within-limits-for-now ) )

(21) profile-within-limits-for-now

(22) (or (not altitude-close-to-target) expedite-needed)

(23) altitude-close-to-target

(24) (or fl-ch-engaged vs-engaged)

(25) profile-within-limits-for-now

(26) vnav-engaged

(27) (not fl-ch-engaged)

(28) (not target-speed-within-limits)

(29) (and (not vnav-engaged) (not capturing-required-altitude) )

(30) (not cdu-page-LEGS)

(31) (not crossing-restriction-built)

(32) crossing-restriction-built

(33) route-modifications-within-limits

(34) (not mcp-altitude-within-limits)

(35) mcp-altitude-within-limits

(36) (not target-speed-within-limits)

(37) mcp-altitude-within-limits



processing method generically. To derive the set of
‘context specifiers’ that represent the current operational
context, CATS requires that the controlled system is
properly instrumented to provide salient state,
constraint, and operator action data. This requirement
presents problems when using flight data from real
aircraft (as discussed in [1]), but not for research flight
simulators that receive clearances via data link
communications [19, 20].

ACTIVITY TRACKING PROCESS — Two threads
comprise the activity tracking methodology as
implemented in CATS: a ‘prediction thread’ responsible
for generating the context information necessary to
predict nominally preferred activities, and an
‘interpretation thread’ that interprets operator actions.
Using its context representation, CATS generates
predictions from its activity model (�). The prediction
thread searches the CATS model top-down, paring the
search as it goes by only considering activities whose
‘parent’ activities are predicted. (In addition to speeding
the search procedure, this scheme allows for parsimony
in specifying the conditions in the model.) The
‘interpretation thread’ in CATS compares detected
operator actions to predicted activities (❶), and assesses
actions that it cannot directly interpret using the

predictions by periodically referencing the activity model
until enough new data has arrived to disambiguate
possible interpretations (❷). Thus, activity tracking is not
merely the detection of operational ‘deviations’ (e.g.,
‘altitude below glidepath’), but instead additionally
considers the operator’s role in causing any such
deviations.

Error         Types    CATS identifies two types of errors: errors of
omission, and errors of commission. It further identifies
‘right action/wrong value’ errors (e.g., dialing the MCP
altitude—the right action—to the incorrect target value).
CATS identifies errors by using information in the CATS
model that enables it to assess actions (or inactions) in
light of the current operational context and the context
that results from operator actions (or inactions). The
CATS error detection scheme entails ‘closing the loop’
between a representation of correct task performance
and the controlled system, and evaluating feedback from
the controlled system to ensure it ‘jibes’ with correct
operator activities. Given that the system is operating
normally and providing ‘good data,’ this is a powerful
concept. Note that CATS does not base its
determinations on a ‘formulaic’ representation of how
errors would appear in a trace of operator activities, nor
attempt to further classify errors, e.g., ‘reversals’ (cf.
[14]). This is because the CATS model does not
represent the ‘steps’ of procedures as ‘step A follows
step B,’ but instead represents procedures implicitly by
explicitly specifying the conditions under which
operators should preferably perform each action, as
discussed above

CATS detects errors of omission by starting a timer when
it determines that an activity should be performed. If
CATS does not detect an action that supports that
activity (either the preferred action, or one that is part of
an alternative valid method) before the timer expires,
CATS signals a possible error of omission. In a detailed
implementation, the length of time should be context-
dependent. A complete representation of the
constraints on operation provides the necessary
information [2].

CATS interprets a detected action as correct whenever it
either matches a prediction, or supports an alternative
valid method for performing a required high-level activity.
After CATS receives updated contextual information, if it
determines that an action does not meet these criteria, it
signals an error of commission. Some actions, such as
‘browsing actions’ that do not directly bear on satisfying
operational constraints, should be identified as such,
rather than as possible errors (see the discussion in
[16]). This is a subject of continuing research.

ERROR DETECTION RESULTS — This subsection
briefly describes an example of CATS detecting an actual
error from flight data collected from the NASA Langley
B757 ARIES aircraft. During a flight, the crew received a
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clearance to ‘climb and maintain 16,000 feet.’ (An
observer recorded the constraint imposed via the
clearance in the absence of data link communications.)
Because the target altitude on the aircraft’s Mode Control
Panel (MCP) showed 10,000 feet, the context specifier
‘mcp-alt-within-limits’ does not appear in the current
context representation. Using its model, CATS therefore
predicts that the crew should ‘dial MCP altitude knob’ to
set the new target altitude. Instead, the crew pushes the
VNAV switch. CATS could not interpret this action right
away, and after repeated attempts still could not
reconcile the action with the current context
representation, which reflected that the aircraft was still in
level flight in Altitude Hold (ALT HOLD) mode at the
previous altitude. CATS therefore flagged the VNAV
switch action as an error. As detailed in the step-by-step
description of the error presented in [3], within about
forty seconds, the crew corrected the situation by setting
the proper target altitude and initiating a VNAV climb.
Thus, the ‘error’ did not result in any incident. This was
the only minor slip CATS detected in data from several
flights. In previous simulator research, CATS also
detected some minor errors [8]. While CATS detects
errors successfully, the rarity of even minor errors
illustrates the difficulty of error-related research.

TRAINING AND ANALYSIS APPLICATIONS —
Connecting CATS to piloted flight simulators affords
error detection in both simulator-based training
applications and HITL ATM simulations. For training

applications, CATS can detect errors, including minor
slips like that described above, that instructors might not
notice. Because CATS records detailed information
about the context in which the error occurred, instructors
can analyze the error and, if warranted, place other
trainees in the identical situation. Much of this process
may be automated using a CATS version that includes
training support. Similarly, in HITL simulation applications,
CATS enables observers to focus on specific
interactions, and detects ‘other’ errors observers may not
notice. It also operates online and supports data
playback to support detailed debriefings [1].

SIMULATING ERRORS

This section describes how simulated pilot agents use
the same model that is used for error detection in a
complementary way. It first describes some previous
research CATS-based agents, then describes how
CATS-based pilot agents can ‘fly’ simulated aircraft and
make realistic errors in a systematic way to support safety
analyses.

CATS-BASED AGENTS — The nominal CATS agent
scheme is shown in Figure 4: the CATS-based agent
simply executes the actions that a CATS activity tracking
implementation predicts for the same operational
context. Research on air traffic controller agents
illustrates how CATS-based agents can use knowledge
external to the CATS model and context representations
[5]. They use the CATS model simply to structure the
high level ‘flow’ of activities. When the context dictates
that some activity should be performed, the air traffic
controller agents reference a ‘skill library’ and ‘control
rules’ to select applicable strategies and determine, for
example, the precise values to include in clearances. By
representing beliefs about the current operational
context separately from the true context, and
manipulating the way the agents update their beliefs
probabilistically, such agents can be made to err in
reasonably realistic ways [4]. The manipulations lead the
agents to miss important cues, perform procedural
operations out of order, and forget key information. As a
result, the agents fail to perform activities correctly.

This research seeks CATS-based pilot agents that make
realistic errors. The pilot agents are different from the air
traffic controller agents because, given that pilots know
the what the constraints on the aircraft’s flight path are,
the CATS model of B757 pilot activities encapsulates all
the knowledge (i.e., rules) about how to fly the aircraft
using the autopilot. Simply manipulating the context
probabilistically can have undesirable effects, because
context is represented at multiple levels of abstraction. If
a high-level context specifier is removed from the active
set, the top-down prediction search may stop at a high
level in the model. The scheme can simulate erroneous
inaction, but in other cases, agents may perform activities
that have nothing to do with the current operational
context (e.g., a agent that needs to set a new MCP target
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altitude might instead tune the radio or lower the landing
gear).

Context-oriented          error          generation        in          pilot         agents    The
pilot agents therefore produce errors using the process
depicted in Figure 5 [6]. First, the error-generation
process identifies any actions the operator should
perform through the normal CATS prediction process
using the set of context specifiers that accurately
represent the current operational context. It then uses a
selected ‘level’ in the model to identify all the activities in
the currently predicted branches of the model within a
specified distance from an action. A slight variation,
referred to as using the ‘expanded set of activities,’
selects activities not only from the currently predicted
branches in the tree, but from all branches below a
predicted activity at a certain level. As described below,
applying the error generation process with the expanded
set of activities is sometimes useful.

After it identifies a set of relevant activities, the process
identifies every context specifier that appears in the
CATS model conditions for performing each activity in
the relevant set. The process next compares this set to
the set of true context specifiers, and identifies those
that are ‘not present, but could be if the context is
erroneously formulated’ and those that are ‘present, but
might not be if the context is erroneously formulated.’
The process then follows a strict procedure for adding or
removing, as necessary, all combinations of context
specifiers from the true set. For each chosen

combination, the process adds the context specifiers
that do not appear and removes the ones that do appear
in the true set. The process then predicts activities
based on each of these revised sets. Once it has
produced a set of potentially erroneous predictions, the
process invokes several filters. From each set of
predicted activities, the process identifies actions,
removes actions that happen to match correct actions,
and removes duplicate sets of predicted actions.

Realism      and         Correspondence       to          CATS         Error         Detection    
Errors generated for a variety of situations are given in
[8]. They show that the error-generation process makes
pilot agents err as if they miss important cues, perform
procedural operations out of order, and forget key
information. The error-generation process produces
errors that are reasonable for a given context; the errors
generated are not ‘too far’ from the correct actions in the
true context. The process yields either ‘inaction’ or
incorrect actions that appear in the same branch(es) of
the CATS model as the correct actions. However, simply
selecting these actions as possible errors does not
provide information about the context that led to the
error. Instead, the process automatically records the
erroneous context representation associated with errors.
For pernicious errors, capturing the context enables
designers to better understand the errors and prevent
them.

A CATS-based agent can produce the errors CATS
detects if both are using the same model. For the
example above, in which the crew slipped and attempted
to engage a autopilot mode to climb without first setting
the new target altitude, the CATS prediction is for the
crew to perform the ‘dial MCP altitude knob’ action to set
the new target altitude. Using only the predicted branch
of the CATS model, the error-generation process yields
three ‘single-element’ errors: ‘[no action],’ ‘push FL CH
switch,’ and ‘push LNAV switch.’ As noted above, the
crew actually performed the ‘push VNAV switch’ action.
The reduced set of errors generated from only the
predicted branch of the CATS model does not list this
option; however, this action is included in the set of
errors generated from the expanded set of activities.
Thus, this example supports the notion that using the
expanded set of activities as input to the error generation
process yields the required set of ‘reasonable’ errors that
might occur in a particular operational context.

Validation       Issues     A rigorous validation strategy entails
connecting both a CATS-based agent and a CATS
activity tracking implementation to the same controlled
system. Then, when the CATS-based agent applies the
error generation process to produce an error, CATS
would detect the error online. Further research is
needed to construct such a test bed. In addition,
research is required on how to make a given erroneous
context persist long enough to produce ‘lasting errors’
that CATS would detect. In essence, the error-

True Operational Context
True Predicted Actions

Potentially Relevant Context

All Erroneous Context
Combinations 

All Potentially
Erroneous Actions 

Potential Errors

Filters

CATS Activity Model

(Prediction process uses
true context)

Relevant ‘context
specifiers’ in
predicted branches

Combinations
different from
true set

(Prediction process uses
all erroneous contexts)

(Remove duplicates, correct
actions, and multiple-action
errors)

Short list of ‘reasonable’ single-
action (or inaction) errors;
select one probabilistically

Figure 5. Error-generation process that uses the CATS
model and prediction process to produce errors ‘related’
to correct actions in a given context, and maintain links to
the error context.



generation process would need to ‘freeze’ the
erroneous context so that the agent would not correctly
perform the action that was erroneously omitted on the
next processing cycle. Also, if the context shifts
immediately to the ‘true’ context, an error of commission
would be followed immediately by a corrective action.
This would limit the utility of a safety analysis utilizing
such agents, because the agent would correct its errors
before their effects could be manifested in the system.

Safety        Analysis         Applications     Given that a new operational
concept implemented in a fast-time simulation with
embedded agents reveals no safety problems under
nominal conditions, how can designers assess the
robustness of the system in the presence of errors? One
way might be to invoke the error generation process
probabilistically, then probabilistically select a single error
from the possible set to execute on the controlled
system. While this scheme could produce interesting
results, it fails to address many of the same problems of
HITL simulations. It may yield an enormous body of data
over numerous Monte Carlo trials, but it provides no clear
indication about how relevant error-related interactions
are in terms of overall system operations. Given that a
simulated concept operates safely under nominal
conditions, a more principled method to examine
robustness in the face of errors should first identify errors
with safety consequences. Such a scheme might work
as follows:

1. For an individual agent, apply the error-generation
process only when the context changes—when
CATS predicts a ‘new set’ of activities, as in [6].

2. Record the entire system state (perhaps by dumping
it to a file).

3. Allow the simulation to ‘play out’ for each error in turn,
starting from the most recent recorded state, log
relevant metrics, and observe the effects of the
error.

4. Proceed deterministically to the next error (or the
next set of errors for another simulated agent).

Is this practical? Consider a fast-time simulation of a new
terminal-area ATM concept, in which controller agents
issue clearances to traffic transitioning to final approach.
Further consider that we are interested in the effects of
pilot errors that lead to aircraft non-compliance on overall
system safety; agents must be able to detect and cope
with errors. Now assume that under the concept a
controller agent nominally issues at most Nc = 3
clearances to a given aircraft, and that the error-
generation process produces at most Ne = 5 realistic
errors in response to any given clearance. Further
assume that a scenario with Na = 20 aircraft takes at most
Tsim = 3 minutes to execute in fast time. Considering each
error for each aircraft independently, an upper bound on
the time required to generate all possible single-error
effects is:

Nc • Ne • Na • Tsim = 15 hours

In fact, the time per run would decrease as recorded
states progress toward the end of the scenario.
Moreover, it might be sufficient to play out each error
condition for only a short time, subject to terminating
conditions imposed according to the controller agent’s
simulated workload or observed aircraft separation
violations or airspace violations. The time is further
reduced if, for the particular scenario, the controller only
needs to clear some aircraft. And, if multiple instances of
the simulation run on multiple computers, with each
simulation generating errors for a few designated aircraft,
more economies result. Considerable additional
research is needed to construct such a test bed,
because developing the required controller agent,
handling multiple simultaneous errors, as well as other
issues all need to be addressed. Nonetheless, such an
approach may prove effective for identifying issues that
warrant further investigation in detailed HITL simulations.

DISCUSSION

This paper has described how a computational model of
pilot activities, used within the CATS framework, can
detect and simulate pilot errors. It generally addresses
three problems with current approaches, viz., errors that
go unnoticed, poor error predictions, and the effort
involved with gathering data and characterizing either
observed or potential errors and their impacts. This
section discusses several ways in which such capabilities
can support safety enhancement efforts.

ERROR DETECTION — First, previous research has
shown that online analysis of pilot performance reduces
overhead associated with simulation data analysis by
automatically detecting errors, logging the context in
which occur, and enabling interactions to be depicted
graphically and replayed to support detailed subject
debriefings [1, 7]. Many of the advantages realized in
HITL settings also apply to simulator-based training
programs. Second, CATS-based error detection
supports other error assessment and usability
techniques; with detected errors in hand the analyst can
focus on examining interface issues. For example,
detected errors together with contextual information
provide a clearer ‘starting point’ for ‘Cognitive
Walkthrough’-style usability analyses [18]. Perhaps a
particular interface made it difficult for operators to figure
out what to do, whether what they did produced the
desired effect, or whether some action was in fact an
error that they should have noticed and corrected. The
approach also may be thought of as ‘jump-starting’
scenario-based analysis techniques, such as THEA [11,
17]. More generally, the context-oriented nature of the
CATS approach supports analyses of situation
assessment problems that lead to error conditions [10].
With required inputs to such techniques in hand,
designers need less time to derive the information
necessary to begin developing solutions to any



observed problems. Finally, carrying the error-detection
application a bit further provides support for cognitive
engineering methods. For example, the CATS model
can be modified to better represent the conditions under
which operators should perform activities. The model can
also use more detailed representations of context that
better map to operator representations discovered
through debriefings. The updated model thereby
reflects an evolving understanding of the required tasks
and situation awareness (cf. [12]).

ERROR SIMULATION — The CATS agent error-
generation capability could be usefully applied in fast
time simulations of new concepts. First, pilot agents that
err in fast time would enable designers to investigate
how the overall ATM system responds to pilot errors.
Second, its emphasis on the link between realistic errors
and the context in which they may occur means that it too
could provide many of the advantages of the
complementary error-detection applications above.
Third, analyzing realistic errors in a fast-time simulation
setting could help tailor HITL simulation studies to
examine operating regimes where errors are most likely
to impact safety. In general, designers could use such an
approach to address situation awareness-related
problems and their effects on system safety and
robustness early in the design process.

CONCLUSION

This paper presented research on computational models
of pilot activities for detecting and simulating errors. It
described research in two areas: activity tracking, in
which a model of nominally correct pilot activities is used
to detect errors, and error simulation, in which similar
models, together with methods for manipulating agent
beliefs, form the basis for agents that err in realistic ways.
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