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Next Generation Air Transportation System (NGATS) concepts require design and 

analysis of interactions involving human operators and new automation tools. Research is 

exploring how air-ground simulations with embedded agents can complement human-in-the-

loop simulations for this purpose. This paper describes research toward integrating 

computational air traffic controller agents into a large-scale distributed simulation in the 

Airspace Operations Laboratory (AOL) at NASA Ames Research Center. Before detailing 

the agent model and architecture and discussing simulation integration issues, the paper 

describes a methodology for using agents to understand human-system integration issues 

and illustrates how the methodology can be applied to an example concept. 

I. Introduction 

oncepts of operation for The Next Generation Air Transportation System (NGATS) are currently taking shape. 

A common theme is the integration of advanced technologies to solve the capacity and efficiency problems of 

today’s air traffic management (ATM) system without compromising its demonstrated high level of safety. NGATS 

concepts, and evolutionary pathways to them, need to be analyzed while still in the early stages of development. 

When the technological components of a concept are considered in isolation, certain assumptions about their 

operation make the concept amenable to analytical analysis.
1
 Analytical studies can produce useful capacity, 

efficiency, and safety metrics, but future concepts also envision critical (albeit, in some cases, backup) roles and 

responsibilities for human operators. Information about the potential workload of human operators, effectiveness of 

required coordination, overall operational acceptability, coping strategies, and the acceptability and use of new 

technologies is crucial for human-systems integration. The principal method for studying human factors of proposed 

concepts is to develop prototypes of new technologies and test them in large-scale human-in-the-loop (HITL) 

simulations. However, HITL simulations can be expensive and time-consuming to conduct. 

Another approach, prevalent in NGATS research plans,
2
 entails using fast-time simulations with embedded 

autonomous agents. This research focuses specifically on agents that represent individual human operators providing 

air traffic control (ATC) services. Fast-time simulations with ATC agents have the potential to accelerate the pace of 

iterative HITL concept development by enabling different automation tool configurations and operator roles and 

responsibilities to be analyzed inexpensively. However, simulations with ATC agents produce fundamentally 

different results from those obtained in HITL simulations. As computational entities, ATC agents excel at 

performing tasks consistently. This quality can be leveraged to distinguish situations in which using specific 

strategies, methods, and supporting technologies are likely to be successful from situations in which they are not. 

Previous agent-based simulation studies have produced interesting results using very simple agents and 

systematically varying only technological and environmental factors (e.g. automation configuration, aircraft 

equipage, traffic characteristics, winds, routes).
3
 This research seeks to enrich the capabilities of ATC agents while 

staying true to this general methodology. A second aim is to produce data from ATC agents that can be compared to 

data from HITL studies. A straightforward way to ensure consistency is to conduct both HITL and agent-based 
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simulations within the same simulation environment. This way, researchers can verify effects observed with agents 

in other simulation environments, and present human subjects with the same conditions. Modified operator roles and 

responsibilities designed to address issues identified in HITL simulations can also be evaluated consistently using 

agents.  

A simulation that can be used to realize these objectives is the large-scale distributed simulation in the Airspace 

Operations Laboratory (AOL) at NASA Ames Research Center.
4
 The AOL hosts a simulation constructed from 

interconnected Multi Aircraft Control System (MACS) stations. It has been used successfully for a number of HITL 

concept studies.
5,6
 Some autonomous agents have been integrated in MACS to perform aircraft control and other 

functions. ATC agents are currently implemented within the Trajectory-Centered Simulator (TCSim).
7
 Under the 

proposed scheme, the agents will be implemented in MACS to ‘staff’ MACS ATC workstations normally staffed by 

human operators. This will enable closed-loop agent-based simulations with technology prototypes and aircraft 

performance consistent with HITL simulations, in addition to enabling mixed human and agent configurations that 

reduce required staffing levels and support part-task research.
8
 Moreover, the capability to validate interesting 

results in the AOL will improve the utility of agent-based simulations in TCSim. 

This paper begins with a general discussion of an agent-based analysis methodology and requirements for agents 

to support it. It then introduces an NGATS-relevant concept of operations in which advanced scheduling and 

trajectory-planning tools and delegation of airborne spacing and merging tasks to flight crews figure prominently. 

After describing areas for analysis, the paper describes a model and architecture for ATC agents. It then discusses 

agent integration with MACS, including how agents can use MACS prototype automation and other functionality. 

The paper concludes with a discussion of issues for further research. 

II. Methodology and Requirements for Agent-based Concept Investigation  

Computational agent models have different forms and different emphases, in terms of the human behaviors they 

simulate. This research extends efforts to develop worksystem models of radar (‘R-side’) air traffic controllers in 

which a single agent represents a single controller. The term worksystem distinguishes these agents as using 

representations tied to the ATM domain
9
 to perform processes hypothesized to support roles and responsibilities of 

the human operator in current and future ATM systems. These ATC agents may be considered ‘computational 

human performance models,’ but they are distinct from cognitive human performance models that explicitly 

represent low-level cognitive processes.
10 
They may also be termed task-analytic, because they use explicit 

computational models of tasks and the operational contexts in which controllers should nominally perform them. 

Simulations with task-analytic worksystem models of ATC practitioners excel at identifying when normative 

task performance succeeds or fails. This methodology for agent-based concept investigation seeks to eliminate as 

much internal complexity as possible from ATC agents, and make interactions with the environment and other 

agents the principal focus of analysis. Once these interactions are understood, adding probabilistic behavior can 

highlight interesting safety-related effects of unusually long task-completion times or the random application of a 

control method—things that certainly occur in practice—but the methodology first seeks to provide a detailed 

understanding of how environmental factors and supporting technologies impact nominal task performance.  

Simulations should proceed in a stage-wise fashion, through a series of trials in which technological and 

environmental factors serve as independent variables that drive variations in ATC agent performance. Key factors 

include aircraft equipage, traffic characteristics, winds, weather, and routes. Simulations should be performed for 

relevant ATC automation tool configurations and nominal agent task specifications for scenarios that represent each 

variation. TCSim includes mechanisms to systematically vary certain aspects of traffic scenarios automatically. This 

process can identify factors agent performance is sensitive to, setting the stage for a new round of simulations with a 

narrower scope. Multiple iterations of fast-time simulations with configurations can be conducted in parallel. Once 

key interactions and operational contexts are identified, these can be simulated in the HITL simulation environment, 

first with agents to validate prior results, then with human subjects. 

From this methodology follow some requirements for agents. First, agent task specifications should represent 

operations specific to particular airspace sectors. Roles and responsibilities differ, for example, between en route and 

terminal-area air traffic controllers. Second, agents should be capable of applying various control strategies. The 

presence or absence certain technologies can affect the priorities controllers assign to different control methods (i.e. 

clearance types). Effects of technologies such as automation tools are reflected in the way an agent executes a 

particular control method. Control strategies specify control method priorities according to characteristics of 

particular spacing or separation problems. Salient characteristics include the types of aircraft involved, their 

category (i.e. departure, arrival, or over-flight), their equipage (e.g. data link, ADS-B, airborne spacing assistance), 

and other factors (e.g. time to sector exit). Third, agent performance should reflect the effects of multi-tasking. Task 
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management priorities, or agenda formulation strategies, determine the order in which actions needed in the 

immediate future should be performed. Like control strategies, agenda formulation strategies may differ according 

to airspace sectors and the specific roles assigned to controllers. Fourth, in early stages of analysis, agents should 

take nominal amounts of time to perform activities. Agents should also have the capability to sample activity times 

from appropriate distributions in later stages of analysis. Finally, agents should produce output that enables 

interactions to be analyzed and understood. Important contextual elements should be included in the data. 

The following section presents a concept of operations slated for exploration in both HITL simulations and 

simulations with embedded agents. The section that follows describes areas for agent-based analysis. 

III. Example Concept of Operations 

A concept, called ‘trajectory-oriented operations with limited delegation,’ has qualities of future ATM concepts 

being developed for the NGATS.
 11
 The idea behind the concept is to achieve overall capacity and efficiency gains at 

acceptable levels of safety by integrating three facets of operations: 

1) Time-based flow management to regulate traffic density; 

2) Trajectory-based operations to create efficient, nominally conflict-free trajectories that conform to traffic 

management constraints; 

3) Airborne separation assistance to maintain local spacing between aircraft. 

Since its initial publication, enabling arrival aircraft to fly efficient Continuous Descent Approaches (CDAs) to their 

assigned runways has become a primary goal for the concept. It has also been extended to include an important 

‘arrival flow conditioning’ role for participating airline operations centers (AOCs). Participating AOCs use schedule 

information to issue en route speed clearances to sequence and space arriving company aircraft with the goal of 

enabling them to fly uninterrupted CDAs. Controllers are responsible for adjusting the sequencing and spacing of 

aircraft from non-participating airlines, and for preventing crossing traffic from interfering with aircraft flying 

CDAs. 

 HITL explorations will examine the concept in both near-term and farther-term instantiations. In the near-term 

condition, controllers have only current-day information. In the farther-term conditions, runway schedules are 

considered to be shared among controllers and participating AOCs. To support the farther-term concept, the 

following prototype decision support tools have been developed in MACS:
 5
 

1) Timelines that display runway schedule information; 

2) Trajectory-based trial-planning 

tools for graphically creating 

conflict-free trajectories that meet 

schedule constraints; 

3) Spacing advisories that indicate 

lead aircraft assignment, and 

current and advised spacing;
6
 

4) Integrated data link that enables 

controllers to uplink Flight 

Management System (FMS)-

loadable trajectory clearances and 

spacing information to aircraft. 

The concept has been instantiated for 

the airspace shown in Figure 1. Four 

airspace sectors are considered: a terminal 

area, two high altitude sectors, and a low 

altitude sector that lies beneath the high 

altitude sector nearest the terminal area. 

For HITL simulations, surrounding 

airspace is managed by confederate ‘ghost’ 

controllers. 

High-altitude sector controllers descend aircraft arriving from the west on the CDA routes shown in Figure 2. 

Test traffic scenarios have been developed that include arrival flows in which aircraft from participating airlines 

constitute the majority of arrivals. Controllers are responsible for fitting other arrivals into the arrival streams. 

Traffic scenarios also include varying levels of crossing traffic, some of which can interfere with CDA execution if 

not properly controlled. 
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Figure 1. Test airspace for the example concept. 
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Air-ground HITL simulations are preliminarily designed to compare operations with three levels of ground-

based automation tool support, in conditions with and without company aircraft from participating AOCs equipped 

for airborne separation assistance. The first level is current-day operations, in which controllers have no access to 

schedule timelines or other tools and participating AOCs condition arrival flows. The second level adds shared 

runway schedules and trajectory-based arrival metering tools; the third level adds the capability for controllers to 

data link trajectories to appropriately equipped aircraft. The HITL simulations seek to provide capacity data in terms 

of arrival throughput metrics, efficiency data in terms of potential CDA flight time realized, and safety data related 

to separation violations, including wake vortex spacing violations at the runway threshold—in addition to data to 

support iterative concept refinement from a human-systems integration perspective. Important data for this purpose 

include feedback from pilots and controllers about workload and coordination issues, operational acceptability, 

coping strategies, and the acceptability and use of prototype automation. 

IV. Agent-Based Analysis  

Research questions about air traffic controller operations for the example concept include questions about 

interference of crossing traffic with CDA arrivals, and how effectively en route controllers can manage arrivals from 

non-participating airlines in concert with AOC speed adjustments to company aircraft. For the agent-based analysis, 

AOC and flight crew roles are treated implicitly: participating AOCs issue appropriate cruise speed advisories to 

company aircraft and flight crews comply with clearances in nominal time. In the current TCSim instantiation of the 

concept, the AOC sequencing and spacing function has been automated, but the MACS airborne spacing algorithms 

are not currently implemented. Thus, the agent-based analysis will initially focus on scenarios in which aircraft are 

not equipped for airborne spacing in both near-term conditions and farther-term conditions with controller tools and 

data link. 

In keeping with the analysis methodology, the agent-based analysis will focus on the sensitivity of different 

control strategies to environmental factors, and tradeoffs that arise, as measured by capacity, efficiency and safety 

metrics. The analysis will use the ‘positive separation’ of aircraft as a safety metric, in addition to separation 

violations. Positive separation refers to whether aircraft will maintain separation in the absence of further 

intervention on the part of controllers. In this concept, it is important for CDA arrivals in relation to crossing traffic. 

 
 Figure 2. Example CDA arrival routes. 
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The agent-based analysis will systematically vary two environmental factors: traffic characteristics and winds. 

Traffic characteristics include characteristics of arrival flows and characteristics of crossing traffic. The analysis will 

vary arrival flows along four interrelated dimensions: density of arrival flows, percentage of aircraft subject to AOC 

flow conditioning, amount of schedule delay to absorb, and percentage of terminal-area merges. As the number of 

arrivals en route controllers are responsible for increases, the more sequencing and spacing work they will have to 

do. In addition, in conditions without arrival timeline tools, the more difficult the sequencing and spacing task will 

be. The amount of delay individual aircraft will need to absorb also affects performance, as there is a limit on how 

much delay can be absorbed with cruise speed adjustments alone within the en route airspace. If controllers do not 

have time to assign speeds early enough, aircraft may require vectors or, in conditions with trajectory-based tools, 

lateral route amendments. Absorbing delay in descent can affect whether and how aircraft fly CDAs. The amount of 

work required to manage merging CDAs depends on suitable control methods and what controllers know about 

required merges. In near-term conditions terminal-area merges are likely to be problematic, because upstream 

controllers will not know where to leave slots in the arrival streams. In dense arrival flows, more terminal-area 

merges may result in more cancelled CDAs. 

The analysis will also vary three interrelated characteristics of crossing traffic: overall traffic level, percentage of 

over-flights versus departures, and percentage of crossing traffic at altitudes that may impact CDA arrival profiles. 

Traffic crossing through airspace regions with arrivals on CDAs has greater safety implications and may be more 

difficult to control. Departures, especially aircraft departing to the west in the test airspace, may be on routes that 

share waypoints with arrivals. Some departures may interact with arrivals both laterally and vertically.  

The second environmental variable is winds. The analysis will consider how differences in predicted and actual 

winds affect the runway schedule and operations that rely on it. Large differences have the potential to degrade the 

effectiveness of AOC flow conditioning, as well as arrival flow management by controllers using timeline tools. 

Winds also affect how readily aircraft respond to particular clearances. For example, depending on their direction 

and speed, winds can help or hinder aircraft deceleration. 

The agent-based analysis will test the effects of environmental variations on the effectiveness of different control 

strategies. Strategies will range from simple (e.g., only adjust the speed of arriving aircraft) to complex (e.g., first try 

speed, then altitude, then lateral clearances).  Preliminary studies have already identified sector-specific differences 

in required control strategies. For example, while the ZKC-50 controller (Figure 1) may prefer using speed 

clearances to adjust arrival spacing, the ZID-17 low altitude controller may need to use lateral clearances to control 

arrivals merging at CHERI (Figure 2). The SDF-262 controller also requires the option to reassign aircraft to runway 

17L, should they end up poorly spaced for the terminal-area merge. 

Control strategies also specify how interactions between different classes of aircraft (e.g. arrival vs. over-flight) 

affect the choice of control method and which aircraft to clear. Preliminary studies have indicated altitude clearances 

are a powerful tool for ensuring positive separation and avoiding the need to vector. Altitude clearances are also 

easier to implement than vectoring, because vectoring requires monitoring for when to issue a turn-back. The agent-

based analysis will provide details on the traffic characteristics and winds under which particular control strategies 

are effective. 

Left out of this description so far is the issue of individual aircraft types. Aircraft types are an important facet of 

arrival streams that affect scheduling, CDA profiles, and maneuverability (and therefore control strategies). The 

appearance of an ‘odd’ type, such as one that is not equipped to fly a CDA using flight management automation, can 

make controllers work harder, because it has to be handled differently. The effects of aircraft type mixes, like mixed 

aircraft equipage, is an important area for analysis. 

The next section describes ATC agents implemented within TCSim. After detailing the agent model and 

architecture, the paper addresses the issue of integrating the agents in MACS. 

V. ATC Agent Model and Architecture 

The ATC agents are implemented in the Java programming language. The basic approach to integrating ATC 

agents with an ATM simulation is depicted in Figure 3. Each ATC agent has access to information on the traffic 

display and can issue clearances to aircraft. When tools are available, agents query them for information about 

sequence, schedule, conflicts, and other information that they would otherwise need to infer from the displayed 

traffic. Agents are updated at a rate that enables them to perform all the necessary processing without falling behind 

the simulation. 

The agent model is actually a collection of models that enable it to perform ATC functions. Individual models 

include: 

1) High-level executive model to control processing; 



 

American Institute of Aeronautics and Astronautics 

 

6 

2) Sector-specific knowledge model; 

3) Model of control strategies to apply; 

4) Agenda formulation/task management model; 

5) Models for implementing individual control 

methods; 

6) Model of controller’s ‘picture’ and the 

processes required to construct and maintain it; 

7) Models of coordination with other agents, 

including aircraft ownership and clearance 

histories; 

8) Activity timing models; 

9) Models of automation tool usage. 

The subsections that follow describe objects central to the ATC agent architecture. To support this discussion, an 

overview of the processing that occurs within an ATC agent is helpful. Figure 4 shows a hierarchical flow diagram 

of the ATC agent processing scheme. At left are the three activities represented in the high-level executive model. 

These activities are performed cyclically. The first activity, ‘Assess Traffic,’ includes the processing necessary to 

update the agent’s picture of the current traffic situation. As has been hypothesized for human air traffic controllers, 

this activity requires the bulk of processing. The picture contains all the agent’s predictions about where individual 

aircraft are going, as well as predictions about where they will go if the agent performs certain control actions (i.e., 

issues certain clearances). These predictions are referred to as planned trajectories (‘Planned Trajs’) in Figure 4. 

Plans for future activities in the picture include control plans, which represent the instances of control method(s) the 

agent is slated to try first, according to characteristics of the agent’s control strategy and a particular problem. 
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Figure 3. Agent-to-simulation information exchange. 
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Figure 4. ATC Agent processing scheme. 
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A. ATCAgent 

The top-level class in the agent architecture is ATCAgent (Figure 

5). An instance of ATCAgent contains the agent’s name, as well as an 

instance of SectorKnowledge (subsection B), an instance of Picture 

(subsection E), a high-level executive model, a master list of plans 

that the agent has executed, a list of notifications from other agents to 

process, as well as graphical display and data logger instances and 

timing data. 

ATCAgent performs actions according to the state of a high-level 

model that controls processing. The invoke() method updates an 

agent’s timing data and, based on the amount of time available for 

processing until the next update, performs required actions. The three 

methods assessTraffic(), formulateAgenda(), and executeAction() 

correspond to state transitions in highLevelModel. Each of these 

methods updates the remaining time available; overruns are subtracted 

from time available in the subsequent processing cycle(s). The 

assessTraffic() method updates the agent’s picture, as shown in Figure 

4. This activity takes an amount of time that depends on the number of 

aircraft visible on the agent’s display. The formulateAgenda() method 

collects planned actions ready to be performed from the agent’s 

picture, and applies agenda formulation strategies to the list of actions 

to arrive at a final agenda of actions to execute. This action is also 

assumed to have a duration that depends on the number of actions in 

the agenda. The agenda formulation strategies can be specified to 

ensure that the number of agenda items does not exceed some number 

(e.g., five actions). 

The executeAction() method executes each action on the agenda in turn. As it does so, it executes the 

recordInMasterPlan() and notifyOtherAgent() methods. recordInMasterPlan() copies the executed plan from its parent 

plan (described in subsection C below) and records it in masterPlan, creating an accounting of what the agent has 

been doing at every point in time. Actions that require notifying other agents, such as handoff initiations or 

acceptances, are recorded on the other agent’s notifications list. When the other agent updates its picture, it executes 

processNotifications(), which updates the agent’s aircraft ownership model or clearance history for the aircraft in 

question. The notification scheme is used to model coordination between air traffic controllers that happens via the 

controller’s display, such as ‘flashing’ a handoff to a downstream controller, as well as that which happens verbally 

(e.g. “AC123 is on a 160 heading”).  The latter sort of coordination only applies in situations where controller 

positions are modeled to be located next to one another. 

B. SectorKnowledge 

A SectorKnowledge object (Figure 6) is instantiated for each 

agent by parsing a text configuration file. Member variables include 

sectorNumber, frequency, separation minima (including spacing 

target values, where applicable), and the agent’s area of regard, 

which represents the airspace visible on the agent’s display. 

SectorKnowledge also includes three knowledge representations: 

exitConditions, agendaFormulationStrategies, and controlStrategies. 

exitConditions represents some of the information found in 

Letters of Agreement with neighboring sectors. For example, 

aircraft entering a sector N should do so by crossing the entry fix 

XYZ at 240 kts and 11,000 ft. agendaFormulationStrategies 

specifies how agents are to prioritize actions on the current agenda. 

controlStrategies specifies how agents should apply control, as 

described above. 

C. ACInformation 

ATCAgent represents knowledge about individual aircraft with 

instances of the ACInformation class (Figure 7). The first member 
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Figure 5. ATCAgent class. 
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Figure 6. SectorKnowledge class. 
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variable, aircraft, is a link to the aircraft’s representation in 

the host simulation. Through this variable, an agent has 

access to information about the aircraft that appears on the 

controller’s display. Using methods accessible through the 

simulated aircraft (e.g. schedule entries, trajectory-

computation methods), an agent can simulate the acquisition 

of information that would be provided through automation 

tools. The atcAgent member variable enables methods within 

the ACInformation class to access sector knowledge and 

timing data contained in the ATCAgent class. 

A critical variable is plannedTraj, a representation of the 

trajectory a controller is planning for an aircraft to fly. 

Controllers are modeled to mentally construct a planned 

trajectory for each aircraft from state information presented 

on the traffic display and flight plan information on the 

aircraft’s flight strip. The planned trajectory may be 

simulated at different levels of fidelity that reflect 

assumptions about how controllers construct it. For example, 

aircraft on FMS descents with speed restrictions may 

perform decelerations that controllers approximate with 

average speeds along segments. When trajectory-based tools 

are available, however, controllers may display trajectories 

down-linked from aircraft to produce a more accurate picture 

of their trajectories. In these cases corresponding accurate representations of plannedTrajs can be computed using 

trajectory-computation methods in the host simulation. 

ACInformation also has clearance models that represent the states aircraft traverse as they perform maneuvers in 

response to particular clearances (Figure 8). For example, if a controller issues a heading vector, the aircraft 

transitions from the ‘charted route’ state to the ‘heading vector’ state. If the controller later issues a direct-to 
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Figure 7. ACInformation class. 
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Figure 8. Example clearance models. 
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Figure 9. Ownership model. 
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clearance to a waypoint on the aircraft’s route, the aircraft transitions to the ‘direct-to’ state. When the aircraft 

reaches that waypoint, the aircraft transitions back to the ‘charted route’ state. 

ACInformation also includes a set of plans devoted to ownership and aircraft progress. Ownership plans represent 

the states and activities agents perform to acquire and transfer track control. They are derived from the ownership 

model shown in Figure 9. The ownership plans for a particular aircraft depend on the sector transit information 

contained in ACInformation, which is determined using its plannedTraj. The sector transit information determines 

which other agents represent the upstream and downstream agents. These are the agents with which the agent 

exchanges notifications upon performing ownership activities, so that those agents can update the status of their 

ownership plans for the same aircraft. If no agent is staffing an upstream or downstream sector, as may be the case 

for ‘ghost’ sectors, a simplified ownership model is used in which no explicit transfer of control is required—the 

‘accept handoff’ and ‘initiate handoff’ actions enable the agent to acquire ownership, or transfer ownership, of the 

aircraft. Another special case involves aircraft that never leave the agent’s airspace. When the aircraft is in the states 

outlined in bold in Figure 9, the aircraft is controllable by the agent. Radio check-in’s from aircraft are missing from 

the ownership model in Figure 9, but could be easily added immediately following the ‘transfer frequency’ action 

from the upstream controller. 

Aircraft progress plans are also derived using the plannedTraj. Progress plans tell an agent when to issue descent, 

approach transition, approach, or landing clearances to a given aircraft. In the test airspace shown in Figure 1, 

certain arrival aircraft may require a descent clearance from the ZKC-50 agent, while others can receive this 

clearance from the ZID-91 agent. The ZKC-50 agent therefore notifies the ZID-91 agent when it issues descent 

clearances, so the ZID-91 can focus on the aircraft that have not yet received one. 

ACInformation also contains control plans that the agent has formulated for the aircraft. As shown in Figure 8, 

control plans are derived from the clearance models by tracing paths through them. Control plans are also 

distinguished as pertaining to lateral, vertical, or speed clearances. Depending on the control strategies an agent 

implements, aircraft can have more than one type of control plan pending at a given point in time. As shown in 

Figure 4, agents plan control actions dynamically rather than immediately reacting to potential separation or spacing 

problems; an agent adds control plans during its picture updating process, then attempts to implement them during 

the agenda formulation process. 

Important methods in the ACInformation class include initialize(), which is responsible for constructing the 

aircraft’s initial plannedTraj and establishing ownership and flight progress plans. updateInformation() updates the 

aircraft’s plannedTraj on subsequent updates to an agent’s picture. The updatePlans() method supports graphical 

display of control plans and updates the plannedTrajs that control plans contain to represent the planned flight path 

of the aircraft, given the maneuvers specified in the control plan. Like updatePlans(), adaptControlPlan() and sub-

methods for adapting individual types of control plans are crucial for implementing a particular control strategy. 

Following the process flow diagram in Figure 4, an agent first applies its control strategies and attaches a control 

plan to an instance of ACInformation that represents an aircraft in conflict. During the agenda formulation process 

the agent collects all the activities that it could perform as part of the 

current agenda. It collects individual clearance plans by executing the 

adaptControlPlans() method for each instance of ACInformation in its 

picture. The adaptControlPlans() method determines which plan to 

adapt and applies a type-specific adaptation method to attempt to find 

a clearance of the prescribed type. If modifications to the aircraft’s 

plannedTraj do not conflict with plannedTrajs of other aircraft, the 

process is successful and the clearance action is returned to the agenda 

formulation process for execution. Depending on the agenda 

formulation strategies in play, the agent may execute the clearance 

and establish a corresponding plannedTraj for the aircraft or perform 

the plan-adaptation process anew on the next agenda formulation 

cycle. 

D. Cluster 

One additional class is important for understanding how an agent 

represents the controller’s picture. The Cluster class represents a 
currently pending separation or spacing problem that an agent has 

identified (Figure 10). Cluster contains a list of the two aircraft 
involved, whether the cluster represents a spacing or separation 

problem, and the lead aircraft (if it is a spacing-type cluster). 

Cluster
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separationFunction

controlStrategy

controlPlans

[timing information]

update()

implementControlStrategy()

[set/get methods]
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[set/get methods]

 
Figure 10. Cluster class. 
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separationFunction holds a so-called ‘separation function’ that represents the lateral and vertical separation between 

the aircraft’s plannedTrajs up to some time in the future (e.g. 10 mins). An agent constructs a separation function for 

every pair of aircraft when it updates its picture; those that reveal potential problems are represented as clusters. 

Cluster updates occur at the end of a picture update, as shown in Figure 4. The update() method updates information 

in clusters that existed previously. Next, every cluster executes its implementControlStrategy() method, which 

assigns a control strategy from the set specified the agent’s sectorKnowledge to the cluster and establishes the 

prescribed control plan for both the cluster and the ACInformation instance determined by the control strategy. The 

agent is now ready to attempt to adapt the control plan on the forthcoming agenda formulation cycle. 

E. Picture 

The model of the controller’s ‘picture’ is represented by an 

instance of the Picture class (Figure 11). Previous subsections have 

already described key components of the picture. In addition to an 

atcAgent member variable that enables access to an agent’s 

sectorKnowledge, the picture contains aircraftList, comprised of 

instances of ACInformation that represent the aircraft that are within 

the agent’s area of regard. arrivalSequence represents an ordered 

list of ACInformation instances for arrival aircraft. When an agent 

has access to sequence or scheduling tools, the tools are accessed to 

create the list; when it does not, the agent constructs the list itself 

using information from the plannedTraj for each aircraft. clusters 

holds the current control problem clusters. 

Separation functions are contained in one of three relationship 

matrices maintained in a Picture instance. A second relationship 

matrix holds information on the first waypoint shared by each pair 

of aircraft; a third holds information about whether each aircraft 

pair has the same downstream sector. The shared waypoint 

relationships are crucial for constructing an arrival schedule when 

no scheduling tools are available. The downstream sector 

information helps determine the risk of ‘handing a deal’ to a 

downstream controller (i.e. transferring control of aircraft that are at 

risk of losing separation in the downstream sector)—something that 

should not occur. 

Picture contains methods executed through an agent’s assessTraffic() method, as shown in Figure 4. 

updateAircraft() collects instances of ACInformation in the agent’s area of regard and places them in the picture’s 

aircraftList. updateRelationships() updates the relationship matrices containing the separation function, downstream 

sector, and first shared waypoint information. updateArrivalSequence() establishes the arrival sequence for the 

current update cycle. updatePlans() simply executes the updatePlans() method of each entry in aircraftList. Finally, 
the updateClusters() method uses the separation function relationship matrix to identify new clusters and update 

preexisting ones. It then executes the implementControlStrategy() method of each cluster to install suitable control 

plans based on an agent’s control strategies. At the end of each update of an agent’s picture, the agent is ready to 

attempt to implement control plans that have been added to clusters and aircraft contained therein. Throughout this 

process an agent’s dataLogger dumps a trace of the process to an output file, so that context leading to the selection 

of a particular clearance may be analyzed. 

F. Control Methods 

A final point concerns the control methods agents apply when they adapt control plans. Because these are 

computational agents, deciding on a value for a particular clearance takes on a flavor similar to highly automated 

NGATS concepts, such as the Advanced Airspace Concept.
1
 That is, a generate-and-test approach must be applied 

to check that planned clearances will have the desired effect. An important difference is that planned trajectories are 

purposefully simulated at a level of fidelity that reflects assumptions about how controllers construct them. The level 

of fidelity of the planned trajectories dictates how well the agents detect problems and choose clearances to solve 

them. 

An agent can generate a variety of planned trajectories of varying complexity. For example, it can produce a 

planned trajectory that reflects vectoring an aircraft to some heading for a planned time or distance before turning it 

back to its charted route, or one that reflects a changing an aircraft’s cruise altitude and issuing a subsequent 
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Figure 11. Picture class. 
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clearance to change back to its original cruise altitude after some time or distance. The generate-and-test process is 

represented by the two processes, ‘Attempt Control Method’ and ‘Check Planned Traj Separation Functions’ in 

Figure 4. The ‘check’ process involves comparing the planned trajectory generated for a particular clearance plan to 

the plannedTrajs of all other aircraft and ensuring there are no predicted losses of separation. The process is 

complicated when other aircraft are also in the process of executing multi-step maneuvers, because the plannedTraj 

that was used to check their plannedTrajs must be updated and used to check the clearance for the current aircraft. 

 For efficiency, efforts have been made to streamline the iterative process used to find workable clearance plans. 

For example, adapting a single-step vertical control plan for an aircraft in cruise flight first involves checking a 

planned trajectory for the next higher legal flight level, then the next lower legal flight level, then two flight levels 

above, then two flight levels below, etc. In general, all of these methods attempt to either shorten the aircraft’s 

overall trajectory, or minimize deviations from it. 

VI. Multi Aircraft Control System (MACS) Integration 

Affording computational agents access to the same prototype automation tools and aircraft models used in HITL 

studies is the main motivation for integrating ATC agents in MACS. The successful integration of another intelligent 

agent, the Crew Activity Tracking System (CATS),
12 
with MACS provides a useful foundation for the ATC agent 

integration work. Because MACS is also Java-based, different code bases are not an issue. This section discusses 

several MACS integration issues that deserve consideration. 

First, MACS is a multi-threaded application with more than a hundred different threads. To achieve proper 

performance running within MACS threads, the ATC agents will need, at minimum, to use smaller processing units. 

More likely, they will require implementation as multi-threaded processes themselves. This raises a number of 

modeling issues, including the possibility of working from a partially updated picture of the current situation. A 

related problem concerns the traceability of multi-threaded agent behavior. Agent performance in the current TCSim 

implementation, while somewhat complex, is perfectly repeatable. Repeatability in a multi-threaded agent model 

may be difficult to achieve. Processing in CATS is somewhat simpler, but successful implementation of CATS as a 

multi-threaded process suggests it can also be accomplished for the ATC agents. 

The database of information MACS uses for configuration will also need to be modified to include ATC agent 

configuration information. In the CATS implementation, only the CATS model of nominally preferred pilot 

activities was added. ATC agents will require sector knowledge and control strategy configuration files. ATC agents 

can use existing database information used to configure MACS controller workstations. This would enable the 

analyst, for example, to dynamically change the agent’s area of regard by simply panning or zooming the display. 

All the controller tool settings are also included in the MACS database, so adjusting these settings can determine the 

tools configurations to be used by ATC agents. 

Because MACS runs either as a single standalone process or as a distributed simulation, however, single-

controller MACS station configuration information cannot be used exclusively. Threading schemes must also enable 

multiple ATC agents to run within a single MACS process. ATC agents currently interact only with other ATC 

agents that update synchronously. A related issue concerns partial human staffing for part-task studies or other 

simulations that are not fully autonomous closed-loop simulations. In MACS any coordination that occurs via the 

display does not require explicit notification. The notification process can still be used for direct agent-agent 

communications, but alternative schemes are required to enable ATC agents to communicate with humans. This 

problem also concerns interactions with human pseudo-pilots with whom controllers typically have the option of 

communicating with by voice. Similar issues were addressed during the MACS-CATS integration process and 

solved using MACS data link functionality. Autonomous MACS pilot stations use a similar scheme. 

Accessing MACS automation tool functionality is straightforward. Because every instance of ACInformation that 

ATC agents initialize contains a reference to the host simulation aircraft, the ATC agents will have ready access to 

schedule information, trajectories, and the methods that support related computations. Existing MACS tool 

prototypes rely heavily on MACS trajectory computation methods and ATC agents can implement similar methods. 

For example, to model controller use of trial-planning tools, ATC agents can specify a list of new lateral trajectory 

change points, with other aircraft trajectory information (e.g. speed schedules, crossing restrictions) remaining the 

same, and MACS will compute a trajectory. Furthermore, MACS checks each trajectory to ensure that it is flyable 

and records this information in the object that represents it. 

A key advantage is the more sophisticated flight guidance modeling in MACS. Aircraft performance is more 

robust to interventions, and guidance-based tools like airborne separation assistance are currently implemented. 

Therefore controller spacing advisory information is also readily accessible. 
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Displays, such as displays for monitoring agent processing, are easy to implement in MACS. MACS also has a 

facility for logging various data that includes configuration windows for selecting which data to collect. These 

capabilities are readily extensible to accommodate ATC agents. 

VII. Conclusions and Further Research 

This paper has described an ATC agent model and architecture and illustrated how it can be applied to analysis 

of NGATS concepts. The model is a task-analytic worksystem model that supports an analysis methodology 

designed to complement HITL simulations. The analysis methodology focuses on examining control strategy 

effectiveness to be tested in the presence of different technologies and environmental factors. Results support the 

evaluation and refinement of human roles and responsibilities in future ATM systems. An important aspect of 

complementary fast-time and HITL simulations is consistency in aircraft and automation performance. To that end, 

ATC agents will be implemented in MACS. 

Among areas that require further research is, first, the analysis of the example concept. Research is underway to 

develop traffic scenarios and a test set of sector-specific control strategies. These are efforts are due to be completed 

around the same time as HITL simulations so the results can be considered in parallel. 

The second area is MACS integration—in particular, a multi-threaded ATC agent implementation and the 

capability to use ATC agents in various simulation configurations. An initial implementation will leverage as much 

of the currently implemented ATC agent architecture as possible. Work in this area has also begun, with some agent 

processing and display threads added to a research prototype of MACS. 

Finally the specification of control strategies and control methods in the ATC agents represents an area of 

continuing research. Different assumptions about how controllers construct planned trajectories require 

implementation and testing. Moreover, an improved understanding of how these ATC agents relate to highly 

automated NGATS concepts and cognitive human performance models that represent air traffic controllers is 

warranted, considering the importance of agent-based concept validation studies for the NGATS. 
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