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Introduction

The process by which humans distinguish
visually between letters of the alphabet is a
matter of considerable theoretical and practical
interest. On the theoretical side, it is a classical
problem in psychology, and has served as a test
case for numerous theories of feature analysis and
pattern recognition. On the practical side, it is
relevant to the effective design of any textual
display. Furthermore, principles discovered in
the study of letter recognition may generalize to
the perception of other types of displayed
information.

In the psychological literature, a number of
theories of letter discrimination have been
proposed. These may be roughly divided into
those that are feature-based, and those that are
image-based. The former predict letter
similarity based on the sharing of particular
features, such as vertical lines, concave right
curves, etc 1. A defect of these models is that they
do not specify the process by which the letter
image is transformed into features. Consequently
they are of little use in font design.

The image-based models predict similarity
based on some measure of the luminance images of
the letters, such as their overlap2, or the overlap
of their Fourier spectra3, 4. A defect of these
models is that they have not been well

motivated by basic principles of pattern
recognition. A general problem with existing
feature and image-based models is that they do
not work very well5.

Our goal was to construct a model of letter
recognition that remedied these flaws. First, we
sought an image-based model that could be
applied to font design. Second, we sought a
“principled” model, that is, one which assumed
that the human observer employed a sensible and
efficient recognition process. Finally, we sought a
“minimal” model that incorporated only
processes that could not be avoided. In this way
we can test whether this simplest model is
adequate, or whether other more complex
processes must be considered.

There are many possible measures of
legibility, including reading rates, letter
discrimination, and letter recognition. We chose a
recognition procedure in which we collected letter
confusion matrices for low contrast letters of one
font. Matrices could then be compared to those
generated by the model.

Model

Before we enter into a detailed description
of our model it is useful to note how it differs from
most prior models. First, rather than operating on
some abstract features ours operates directly on
the intensity image. This has the advantage of
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obviating the difficult step of converting the
image to features, and also tests whether such a
conversion is necessary to understand letter
discrimination. Second, rather than adopting
some arbitrary recognition strategy, we adopt an
ideal observer as the basic mechanism. This is an
instance of the minimalist principle enunciated
above, since the ideal observer is the only model
which uses all available information and which
therefore assumes no arbitrary losses of
information6.

Components

The overall structure of the model is
pictured in Figure 1. The components are a spatial
filter, a noise source, spatial position uncertainty,
and an ideal observer.

Filter Position
Uncertainty

Ideal
Observer

Noise "A"A

Figure 1. Letter recognition model.

The spatial filter represents the limited
resolution of the visual system. We have
modeled this filter as a Gaussian, with a scale
parameter s controlling the amount of blur

exp π x/s 2 1

In the frequency domain, this is a Gaussian with
a scale of 1/s, and a half-amplitude half-width
of 0.47/s. Figure 2 shows this filter, with a scales
of 1.25, 2.5, and 5 pixels, superimposed on contrast
sensitivity data collected in our lab 7. The best fit
is a scale of 2.5 pixels.
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Figure 2. Contrast sensitivities and three spatial
filters.

The noise element represents noise in both
the signal and in the neurons in the early visual
system. We model it by a spatially uncorrelated
Gaussian process. By varying the standard
deviation of the noise we can control the overall
performance of the model.

The ideal observer maintains a memory
image (template) of each possible letter, as it
would appear after blurring. It examines the
blurred, noisy sample image, and computes which
letter is most probable8. However, because the
ideal observer does not know exactly where the
test image was, because of eye movements and the
like, it must consider multiple templates for each
letter, each consisting of the same template
shifted by differing amounts horizontally or
vertically. Each possible shift has a certain
probability, which may be represented
collectively by a prior density function. We
represent this uncertainty function p(x,y) as a
Gaussian density with a particular scale. A large
scale means high uncertainty, a small scale
means little uncertainty. We considered scales of
0, 1, 4, and ∞ pixels. The last value corresponds to
a uniform probability over the 32x32 pixel image.

The final output of the model is a letter
name. Data are collected from the model by
repeated Monte Carlo trials, and compared to
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results from human observers. Note that the
human and model observers are presented with
the identical letter stimuli.

Computations

Let the letter presented be indexed by s, and
the candidate letter by k. Then the signal
received is given by ms + n, where ms is the actual
letter image and n is a noise image. For each
candidate letter image mk, we evaluate the

discriminant function

d k ,s   = ∑
x

p  exp 1
σ2

  ms + n  ⊗ mk   -  1
2

 m k
2   ∑

y
2

where p is the uncertainty function, σ is the noise
standard deviation, ⊗ indicates discrete

correlation, and mk  is the norm of the candidate
image. This function is monotonic with the
posterior probability that candidate k was
presented, given a signal ms + n, such as would be
produced by the sample letter image ms. The

model observer selects the candidate letter k for
which this discriminant is largest.

General Methods

Some of our methods are common to both
simulations and human experiments, and they are
described here. We used a font (gacha.r.7) drawn
from the font library on a SUN workstation (Fig.
3). Only upper case letters were used, with
negative contrast. Each character was defined on
a raster of 5 pixels wide by 9 pixels tall. At the
viewing distance of 114 cm this corresponds to 7.5
by 13.5 min arc. This was centered in a raster of 32
by 32 pixels to prevent wrap-around during
digital filtering.

Figure 3. Three letters from the font gacha.r.7
used in the experiments and simulations.

Data were collected in two phases. In
Experiment 1 we determined a font recognition
contrast threshold. This is the letter luminance
contrast threshold that yields approximately
82% correct identifications. The threshold was
determined by means of the QUEST adaptive
staircase procedure 9. On each trial a letter was
randomly selected (with replacement) and
presented to the observer, either real or
simulated. The observer reported the apparent
identity of the letter. A psychometric function for
the complete alphabet was maintained,
describing the probability of recognition as a
function of contrast, independent of letter. After
each trial these data were fit with a Weibull
function, and the next trial was placed at the 82%
point of this function. At the conclusion of the
experiment, threshold is estimated as the 82%
point of the best fitting Weibull curve 10. Figure 4
shows typical simulation results from Experiment
1.
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Figure 4. Simulated results from Experiment 1.
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Circles are data, heavy line is the best fitting
Weibull function, light lines are confidence
limits, and bars are numbers of trials.

Experiment 2 is the collection of a confusion
matrix. Contrast was set 1 dB below the font
recognition contrast threshold. This contrast was
chosen to permit generation of a useful confusion
matrix, which requires a substantial number of
wrong answers. With contrast fixed at this value,
the complete set of letters was presented a number
of times in random order. The number of each
letter response to each letter presented was
recorded.

Simulation Methods

Simulations were carried out on a SUN
workstation augmented with an array processor.
The blur filtering, and calculation of posterior
probabilities were done in the frequency domain.
In Experiment 1, 2600 trials were used. In
Experiment 2, each confusion matrix contained
26000 trials (1000 trials/letter).

We simulated filter scales of 0, 1.25, 2.5,
and 5 pixels. For a viewing distance of 114 cm,
these correspond to frequency half-widths of ∞,
15.02, 7.51, 3.75 cycles/degree. The uncertainty
function was simulated by a Gaussian with scales
of 0, 1, 4, and ∞ pixels. The simulation proceeds at
a rate of about 1.5 second/trial, or about 11 hours
for a complete confusion matrix of 1000
trials/letter.

Psychophysical Methods

Letters were stored in an Adage RDS-3000
framebuffer and displayed on a monochrome
monitor with a resolution of 20 pixels/cm.
Viewing distance was 114 cm, providing an
effective resolution of 40 pixels/degree. Letters
were displayed with negative contrast on a
background of 100 cd/m2.  Display was viewed
binocularly with natural pupils. A small (one
pixel) fixation point was provided between

trials.

Frame rate of the display was 60 Hz, non-
interlaced. The contrast during each presentation
followed a Gaussian time course with a scale of 87
msec and a total duration of 200 msec. Calibration
and other procedures are described elsewhere11.

Responses were collected verbally and
typed in by the experimenter. Feedback was
provided in Experiment 1, but not in Experiment 2.
Four observers served in both experiments. All
were male between 17 and 33 years of age with
corrected acuity.

Results and Data Analysis

Experiment 1

Letter recognition contrast thresholds for
four observers were -15.79, -13.73, -14.61, -15.54
dB (average = 14.91, sd = 0.94). This mean
corresponds to about 18% contrast. Each threshold
was estimated from 128 trials.

Experiment 2

Confusion matrices with 60 trials/letter
were collected from the same four observers used
in Experiment 1. Overall percent correct for the
four observers were: aef, 75.8; abw, 80.8; abp, 64.7;
ejl, 78.3. The average matrix is shown in
greyscale in Figure 5. Expressed relative to
trials/letter, off diagonal values range from zero
to 27%.
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Figure 5. Average confusion matrix for four
observers.

A simple comparison that can be made
between empirical and simulated confusion
matrices is the correlation. However it has been
pointed out that this exaggerates the agreement
since it tends to be dominated by the fact that
both matrices have a large main diagonal
(correct responses) 5. Accordingly we consider
separately the correlations between the main
diagonals and the off-diagonals of the two
matrices.

As a standard of comparison, we first
generated a predicted confusion matrix using the
“physical overlap” method described by
Townsend 2. This consists of counting the “on”
pixels common to two letters when superimposed,
and assigning matrix probabilities in proportion
to this count. We used this as a standard because
it appears to have produced the best published
performance. The off-diagonal correlation was
0.49, and the on-diagonal was 0.12.

The correlations for our model with various
parameters are shown in Table 1. For the filter
spread of 2.5 pixels and the prior density of 1
pixel, the on- and off-diagonal correlations are
0.67 and 0.72. These are much higher than those

of the overlap model. The correlation is
somewhat sensitive to filter scale, but less
sensitive to uncertainty scale.

Filter Un-
certainty

On Off Off,
Unbiased

0 0 0.24 0.62
0 1 0.25 0.62 0.65
0 4 0.16 0.55
0 ∞ 0.13 0.51

1.25 0
1.25 1 0.39 0.67 0.74
1.25 4 0.32 0.65
1.25 ∞

2.5 0 0.67 0.71 0.81
2.5 1 0.67 0.72 0.86
2.5 4 0.65 0.72 0.84
2.5 ∞ 0.65 0.71 0.86

5 0
5 1 0.63 0.53 0.62
5 4
5 ∞

overlap
model

0.12 0.49 0.54

Table 1. Correlations between empirical and
model confusion matrices.

Bias
Although the correlations produced by the

model are substantially better than those in the
literature and than the overlap model,
considerable variance remains unaccounted for.
One probable source for this variance is bias. This
may be seen in Fig. 6 which shows the frequency
with which each letter was reported by each of
the four observers. Since each of the letters was
presented equally often, this is a rough indicator
of bias.
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Figure 6. Ratio of response totals to presentation
totals for each letter.

To determine how well our model accounts
for the underlying similarity structure we
transformed the matrix in a manner that removes
bias 2, 12. The off-diagonal correlations that
result are shown in the last column of Table 1.
With the best fitting parameter values (filter
scale = 2.5, uncertainty scale = 1 or infinite), a
correlation of 0.86 is obtained.

Conclusions

We have shown that a very simple model
of letter recognition is capable of generating
confusion matrices that correlate well with
empirical matrices. After bias has been removed,
little variance remains unaccounted for. This
suggests that little additional predictive power
will be gained by making the model more
complex.

We must acknowledge that these
conclusions apply only to the particular
conditions we explored. It will be important to
generalize these results to other letter sizes,
fonts, conditions of presentation, and measures of
performance.  Indeed, a demonstration that such
predictions could be made, without change in
model parameters (noise level, filter scale,
uncertainty scale) would greatly increase the
value of the model.

One purpose of this study is the
development of a robust, easily-calculated metric
for the legibility of letters and fonts. When
predictions depend upon Monte Carlo simulation,
such a metric is difficult to specify. These
simulations are necessary because position
uncertainty complicates the discriminant function
in such a way that a closed form solution is
unavailable. However, the results in Table 1
show that uncertainty scale has only a modest
effect on the quality of predictions. Consequently
it may prove possible to use the zero-uncertainty
closed-form solution as an approximation, and as
the basis of a legibility metric.
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