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Controller workload has been a focal topic in air traffic management research because it is considered a key 
limiting factor to capacity increase in air traffic operations. Because workload ratings are subjective and 
highly prone to individual differences, some researchers have tried to replace workload with more objective 
metrics, such as aircraft count. A significant caveat in substituting these metrics for workload ratings, 
however, is that their relationships are non-linear. For example, as the number of aircraft increases linearly, 
the controller’s perceived workload jumps from low to high at a certain traffic threshold, resulting in a step-
function increase in workload with respect to aircraft count, suggesting that controllers perceive workload 
categorically. The non-linear relationship between workload and aircraft count has been validated using 
data collected from a recent study on the En Route Free Maneuvering concept element (Lee, Prevot, 
Mercer, Smith, & Palmer, 2005). The results suggest that objective metrics, such as aircraft count, may not 
be used interchangeably with subjective workload. In addition, any estimation on workload should not be 
extrapolated from a set of workload measures taken from an experiment since the extrapolated workload is 
likely to significantly underestimate workload. 

INTRODUCTION 

Anticipated increase in future air traffic demand has led to 
a number of concepts aimed at improving efficiency and 
increasing capacity while maintaining a high level of safety. 
While some concepts or procedures, such as Reduced Vertical 
Separation Minima (RVSM), can significantly increase 
physical airspace capacity, the increased capacity cannot be 
fully utilized unless additional aircraft can be safely managed 
by the sector controller(s). Since workload is a limiting factor 
in en route and transition airspace capacity, it is a key metric 
that has been researched in the past (e.g. Hilburn, Bakker, 
Pekela, & Parasuraman, 1997, Stein, 1985). 

Since workload is highly subjective and has been shown to 
have large individual differences, attempts have been made to 
replace subjective workload metrics with correlated objective 
metrics, such as peak aircraft count, traffic geometry, total 
time in sector, number of clearances, etc. Over the years, 
researchers have explored ways to quantify the underlying 
traffic and sector complexity that drive controller workload. 
Mogford and his colleagues (1995) proposed that air traffic 
control (ATC) complexity – defined as a combination of both 
sector and traffic complexity – affects controller workload 
through mediating factors, such as quality of equipment, 
cognitive strategies, and individual differences. Another term, 
“Dynamic Density”, has been used to define the collective 
effect of all factors that contribute to ATC complexity (e.g. 
Kopardekar & Magyarits, 2002). One of the key motivations 
for Dynamic Density research is to find a set of metrics that 
can replace current day Monitor Alert Parameters (MAPs) to 
predict traffic complexity and associated controller workload. 

A general approach to correlating workload and objective 
metrics has been to first identify and/or define objective 
metrics. Using those metrics, multivariate linear regression 
models were fitted to the data and the metrics that contribute 

little to the overall prediction were eliminated from the 
regression models (e.g. Kopardekar & Magyarits, 2002; 
Majumdar & Ochieng, 2002; Laudeman, Shelden, Branstrom, 
& Brasil, 1999). 

A key shortcoming of such an approach, however, is that 
perceived workload is often non-linear. For example, 
controllers may report relatively low workload given a busy 
but manageable traffic. Once the traffic reaches a certain 
critical threshold, however, a significantly higher workload 
may result from a slight increase in traffic or an occurrence of 
an off-nominal event. Despite a general recognition in the 
research community that relationships between workload and 
complexity factors are probably non-linear, details of the 
relationships remain largely unknown (Athenes, Averty, 
Puechmorel, Delahaye, & Collet, 2002) and unsubstantiated 
by experimental data. 

In this paper, a linear regression model of workload was 
compared to two alternative non-linear models to examine the 
relationship between workload and aircraft count. The 
regression models were fitted against high traffic data that 
were collected during an evaluation of En Route Free 
Maneuvering concept element under Distibuted Air-Ground 
Traffic Management (DAG-TM) (Lee, Prevot, Mercer, Smith, 
& Palmer, 2005). The resulting aircraft count was actually 
higher than current day MAPs due to advanced decision 
support tools that reduced overall task load per plane, thereby 
allowing the controllers to handle more planes. The aircraft 
count was selected as the objective metric to be compared to 
workload in this initial analysis because it has been shown to 
correlate well with workload in past research (e.g. Masalonis, 
Callaham, & Wanke, 2002; Manning, Mills, Fox, Pfleiderer, 
& Mogilka, 2001). Similar analyses are currently being 
planned for other ATC complexity metrics.  

Each of the following regression models supports a 
different hypothesis of controller workload: 



 

 
• Linear – workload increases linearly with increasing 

aircraft count (and presumably with other task load 
metrics). A linear model suggests that subjective 
workload directly reflects the number of tasks that a 
controller performs in a given traffic situation. 

• Exponential – workload is relatively low when the 
traffic is low, but workload increases at a faster pace 
as the traffic increases. An exponential model suggests 
that workload is modest below a certain threshold but 
that it quickly becomes unmanageable after the 
threshold with each added aircraft. 

• S-curve – workload is low and relatively constant 
when the traffic is low but when the aircraft count 
passes a certain threshold, the workload becomes high 
and then levels off with increasing traffic. An s-curve 
model suggests that subjective workload is categorical 
– i.e. the controller feels that workload is low, high, or 
ultimately unmanageable. As the aircraft count, traffic 
complexity, and/or task loads increase, workload 
remains relatively constant in one of the three 
categories (i.e. low, high, unmanageable) until a 
certain threshold is reached, at which point the 
workload “jumps” to the next level. 

 
By comparing the traffic scenarios that were run in the 

2004 DAG-TM study with the three regression models, we 
can evaluate which model fits best with the observed data. 
Following the results section, implications of the findings will 
be discussed. 

METHOD 

Participants 

The experiment included 22 commercial airline pilots and 
5 certified professional air traffic controllers. Four controllers 
staffed four radar positions (three high altitude sectors and one 
low altitude sector). One additional controller served as a 
tracker/supervisor, supporting the radar controllers during 
peak workload periods. Twenty one aircraft simulators were 
flown by participant pilots at NASA Ames and NASA 
Langley. All remaining aircraft in the simulation were flown 
by pseudo-pilots with autonomous agent support at NASA 
Ames and NASA Langley. 

Airspace 

The simulation airspace included portions of Albuquerque 
Center (ZAB), Kansas City Center (ZKC), Fort Worth Center 
(ZFW) and Dallas-Fort Worth TRACON (DFW) (Figure 1). 
Controller participants worked four test sectors in the 
northwest arrival corridor: three high altitude sectors 
(Amarillo in ZAB, Wichita Falls and Ardmore in ZFW), and 
one ZFW low altitude sector (Bowie). Three retired controllers 
handled the surrounding traffic that entered or exited the test 
sectors.  

Arrivals transitioned Amarillo high and Wichita Falls high 
from the northwest and Ardmore high from the north. The two 
main streams of arrivals merged at the BAMBE meter fix in 
the Bowie low sector before entering the TRACON. The 

traffic mix in Amarillo consisted of arrivals and overflights in 
level flight. A significant portion of the Wichita Falls traffic 
was arrivals while Ardmore had arrivals, departures, as well as 
a significant number of overflights. 
 

 
Figure 1. Simulated airspace 

 

Ground Capabilities 

To maximize the benefits of the advanced air and ground-
side decision support tools (DSTs), they were integrated with 
Controller Pilot Data Link Communication (CPDLC) and the 
Flight Management System (FMS). This integration allows 
controllers and pilots to exchange 4-D trajectory information 
quickly and with low workload. The controller decision 
support tools have been integrated into a high fidelity 
emulation of the Display System Replacement (DSR) 
controller workstation. This DSR emulator is highly 
configurable to mimic both DSR workstations in the field 
today and future DSRs with advanced decision support tools. 
In order to support the concept, all aircraft were equipped with 
CPDLC, FMS, and automatic dependent surveillance-
broadcast (ADS-B). The aircraft flown by the commercial 
pilot participants also had Cockpit Display of Traffic 
Information (CDTI) displays integrated with conflict detection 
& resolution (CD&R) and advanced required time of arrival 
(RTA) capabilities. More detailed descriptions of the ground 
capabilities are presented in Lee, et al. (2005). 

Experimental Conditions 

The study consisted of four experimental conditions. Each 
condition was run four times. The first two conditions were 
conducted at slightly above current day maximum traffic 
levels (Level 1), the former consisting of entirely managed 
aircraft and the latter having a mix of autonomous and 
managed aircraft. The next two conditions added increasing 
numbers of self separating overflights. The arrival traffic, 
while demanding, remained relatively constant throughout all 
scenarios. Consequently, the Bowie low sector, which only 
had the arrival traffic, maintained a relatively constant traffic 
volume across conditions. 

The overall study lasted two weeks, which were roughly 
divided into one week training followed by a week of data 
collection runs. Due to constraints in training time, the 
controller participants did not rotate through different sectors 
during training or during data collection, maximizing their 



 

proficiencies in their assigned sectors. Hence, the workload 
ratings in each sector also represent the ratings of a particular 
controller who was assigned to that sector, confounding sector 
specificity with individual differences. 

For the analyses in this paper, only the first condition (i.e. 
100% managed airspace with high traffic), consisting of four 
runs per sector, is discussed. Details of the overall 
experimental results are presented in Lee et al. (2005). The 
traffic levels for the three high altitude sectors were 
established through an informal “traffic load test” prior to the 
final simulation (Lee, Mercer, Smith, & Palmer, 2005). In the 
load test, traffic scenarios with different levels of peak aircraft 
count were presented to controller participants. After 
managing each traffic scenario, they provided feedback on 
whether or not the traffic was manageable. Based on the 
feedback, the traffic levels were adjusted and the process was 
repeated until the maximum manageable traffic level was 
established in each sector. The traffic scenarios were 
subsequently re-adjusted during a series of dress rehearsals 
based on further controller feedback. The resulting traffic 
scenarios were quite challenging, often pushing the controllers 
up to, but not over, their workload limits. 

RESULTS 

Aircraft Count 

The traffic scenarios gradually increased in traffic to its 
maximum during the first twenty minutes of the simulation. 
The maximum traffic was maintained during the next 30-35 
minutes before tapering off for the last 5-10 minutes of the 
simulation run. Figure 2 illustrates the general traffic patterns 
in the high altitude sectors by plotting the maximum number 
of owned aircraft at each 5-minute time block vs. simulation 
run time. The maximum aircraft count in the three high 
altitude sectors was 26, 22, and 21 for Amarillo, Ardmore, and 
Wichita Falls, respectively. The MAP values for these sectors 
were 18. Since the workload was low for the Bowie sector 
controller, Bowie sector data were excluded from the 
following analyses.  
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Figure 2. Aircraft count vs. simulation run time; aircraft 

count averaged across 4 simulation runs 

Subjective Workload 

Subjective workload assessments were collected from the 
controllers using the Air Traffic Workload Input Technique 
(ATWIT) (Stein, 1985). During the simulation runs, 
controllers were required to rate their workload on a scale of 1 
to 7 at 5-minute intervals. Figure 3 shows the workload ratings 
over time for the three high altitude sectors. The pattern of 
workload ratings generally mirrors that of the aircraft count, as 
suggested by the similarities of the plots in Figure 2 and 3. 
However, regression analyses in the following section reveals 
that the correlation between workload and aircraft count are 
non-linear. 
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Figure 3. Workload ratings vs. simulation run time; 

ratings averaged across 4 simulation runs 

 
An interesting and unexpected outcome of the workload 

ratings was that the controller participants rated the workload 
to be only moderately high, as their ratings rarely reached 6 or 
7. These ratings were counter to both the over-the-shoulder 
observations and feedback from controller participants during 
the traffic load test and dress rehearsals. A possible factor for 
the lower-than-expected workload ratings may be that traffic 
scenarios which seemed challenging during the initial 
feedback stage may have become easier to handle as they 
became more familiar with the tools and the sector 
characteristics after the final training sessions. Another factor 
may be that controllers generally “saved” a 6 or 7 workload 
rating for extremely difficult traffic situations, such as ones 
caused by thunder storms, and they felt that high aircraft count 
alone did not warrant those maximum workload ratings during 
the experiment. 

Regression Fit 

Controller workload was plotted against the peak aircraft 
count during the five minute span prior to the workload 
assessment.  For the Amarillo sector, a visual inspection of the 
plotted data suggests relatively low workload ratings between 
1 and 2 for the aircraft count of 16 and below. Workload 
ratings jump to 4 and 5 when the aircraft count is greater than 
20. A similar pattern of results emerged from the other two 
sectors, Ardmore and Wichita Falls. 
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Figure 4. Workload vs. aircraft count: observed and 

regression fits for the high altitude sectors 

A linear, exponential, and s-curve regression lines/curves 
were fitted against the plotted data.  The R2 values were then 
calculated for the regression lines/curves. The regression 
equations were defined as follows: 

 
• W = predicted workload 
• AC = aircraft count 

 
• Linear: W = ACba *+  
• Exponential: W = ACbea **  

• S-curve: W = d
e
a

cACb +
+ +*1

 

 
For the non-linear regression curves (i.e. exponential and 

s-curve), the parameters in the regression models were 
iteratively estimated to minimize the SSerror. The iterative 
estimation/optimization of parameters (i.e. a and b for 
exponential; a – d for s-curve) was done using Microsoft 
Excel’s Solver. For example, Table 1 shows the optimized 
parameter values that provided best fits for the regression 
models in the Amarillo sector. 

 
Parameters Linear Exponential S-curve 

a -1.102 1.002 3.592 
b 0.231 0.061 -0.566 
c – – -10.73 
d – – 1.207 

Table 1. Optimized regression model parameters for the 
Amarillo sector 

 
Table 2 summarizes the R2 values for the regression curve 

fits in the three high altitude sectors. Across all three sectors, 
the s-curve regression model provided the best fit, followed by 
the linear model, then the exponential model. All models were 
significant, i.e. p < 0.001. 

 
 Linear Exponential S-curve 
Amarillo 0.77 0.70 0.84 
Wichita Falls 0.54 0.50 0.61 
Ardmore 0.27 0.25 0.52 

 

Table 2. R2 of linear, exponential and S-curve regression 
fit in the high altitude sectors; p-values < 0.001 

 
The results showed that the Amarillo sector’s workload 

data provided the best fit to the regression models, followed 
by the Wichita Falls data, then the Ardmore data, regardless of 
the type of regression model. The s-curve model provided a 
much better fit to the data compared to the linear and the 
exponential models in Ardmore sector, but the improvement 
was relatively small in Amarillo and Wichita Falls sectors. 

DISCUSSION 

A comparison of three possible models of controller 
workload as a function of aircraft count yielded the best fit 
with the s-curve model. This finding suggests that the 
subjective workload was categorical. A sudden jump in 



 

workload ratings from low to high was striking, especially for 
the Amarillo and Wichita Falls sectors. The workload ratings 
remained low and constant for aircraft count below a certain 
threshold (approximately 12 for Wichita Falls and 15 for 
Ardmore and Amarillo), then quickly increased for the next 3 
– 8 additional planes, and then leveled off again for the high 
traffic counts. Since the traffic scenarios were designed to 
create high but manageable workload, we could not examine 
the amount of traffic that would increase the workload ratings 
from high to unmanageable. 

It is unclear, however, where the transition from high to 
unmanageable workload would have occurred. Workload 
ratings that increased quickly around the threshold remained 
constant once the aircraft count exceeded 20 for Amarillo and 
16 for Ardmore and Wichita Falls. Over-the-shoulder 
observations seemed to suggest that even though the controller 
participants reported a constant workload with increasing 
aircraft count above 20, the increased task load (e.g. handoffs, 
check-ins, etc.) associated with the greater number of aircraft 
seemed to reduce their availability to perform additional tasks. 
If the task load exceeded the time available to work the traffic, 
controllers likely would have reported the workload to be 
unmanageable. Besides aircraft count, the factors that 
contribute to the time demands include the number of potential 
conflicts, traffic complexity, and off-nominal events. The 
contributions by these and other potential factors have yet to 
be fully examined and will be addressed in the near future. 

An interesting outcome of the regression models is that 
although the s-curve provided the best fit to the data, the linear 
regression captured a significant portion of the variance in the 
Amarillo and Wichita Falls sectors, as shown by similarities in 
R2 values between the two models in those two sectors. The 
results suggest that a linear regression model may often be 
adequate to predict interpolated workload values between 
measured workload ratings under certain situations (e.g. 
certain controllers and/or sectors). However, a significant 
improvement in R2 value for the Ardmore sector using an s-
curve fit suggests that significant differences in workload 
characteristics between different controllers and/or sectors 
may be more consistently captured by an s-curve model.  

Human-in-the-loop simulation data are often used as input 
parameters to feed fast-time models that explore various air 
traffic concepts. However, the data may be unsuitable for use 
in any fast-time modeling that explores increased airspace 
capacity by lowering controller workload. The results from 
this study indicate that none of the models adequately 
extrapolate workload from measured data. For example, if the 
workload data were taken only for traffic scenarios of 16 or 
less aircraft in the Amarillo sector, at an aircraft count of 21, a 
linear and an s-curve regression models would have yielded 
predicted workload values of 1.94 and 3.0, respectively, 
whereas the actual workload ratings at 21 aircraft were 4.0. 
Both models severely underestimated the workload, although 
the s-curve model still performed better than the linear model. 
Therefore, research based on workload extrapolations should 
be done with great caution and with conservative assumptions. 

CONCLUSION 

The relationship between workload and aircraft count has 
been examined using traffic scenarios with a high aircraft 
count. Linear and non-linear regression models were fitted to 
the observed data, which yielded the best fit with an s-curve 
model, suggesting that perceived workload is categorical. 
There are interesting implications to the non-linear 
relationship between subjective workload and traffic count. 
First, metrics such as traffic count or task loads should not be 
used interchangeably with subjective workload. Secondly, any 
estimation on workload should not be extrapolated from a set 
of workload measures taken from an experiment since the 
extrapolated workload is likely to significantly underestimate 
workload. Finally, the threshold that separates low, high, and 
unmanageable traffic levels needs to be determined in order to 
fully characterize the impact of traffic patterns and other 
situational factors on controller workload, but further research 
is needed to understand how to accurately account for these 
factors.  
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