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Image processing for
improved eye-tracking accuracy

JEFFREY B. MULUGAN
NASA Ames Research Center,Moffett Field, California

Video cameras provide a simple, noninvasive method for monitoring a subject's eye movements. An
important concept is that of the resolution of the system, which is the smallest eye movement that can
be reliably detected. While hardware systems are available that estimate direction of gaze in real time
from a video image of the pupil, such systems must limit image processing to attain real-time perfor-
mance and are limited to a resolution of about 10arc minutes. Two ways to improve resolution are dis-
cussed. The first is to improve the image processing algorithms that are used to derive an estimate. Off-
line analysis of the data can improve resolution by at least one order of magnitude for images of the
pupil. A second avenue by which to improve resolution is to increase the optical gain of the imaging
setup (i.e., the amount of image motion produced by a given eye rotation). Ophthalmoscopic imaging
of retinal blood vessels provides increased optical gain and improved immunity to small head move-
ments but requires a highly sensitive camera. The large number of images involved in a typical exper-
iment imposes great demands on the storage, handling, and processing of data. Amajor bottleneck had
been the real-time digitization and storage oflarge amounts of video imagery, but recent developments
in video compression hardware have made this problem tractable at a reasonable cost. Images of both
the retina and the pupil can be analyzed successfully using a basic toolbox of image-processing rou-
tines (filtering, correlation, thresholding, etc.), which are, for the most part, well suited to implemen-
tation on vectorizing supercomputers.

Accurate knowledge ofeye position is often desired, not
only in research on the oculomotor system itself but also
in many experiments on visual perception, where eye
movements can provide indirect evidence about what the
subject sees. It has also proven quite useful in infant
research, where the experimental subjects cannot under-
stand instructions or make voluntary responses but, nev-
ertheless, can reveal their perceptual processing through
eye movements. For example, infant color vision has been
assessed by observing the direction ofeye movements in
response to a dynamic color stimulus (e.g., TeIler &
Palmer, 1996). In this and other situations, it is impor-
tant that the measurement system be noninvasive to the
subject. Recording of eye movements using video cam-
eras satisfies this requirement, and the advent of new
hardware for digitizing and storing video sequences on a
normal computer disk aIlows the application ofpowerful
software programs to the analysis of eye movements. In
this paper, I wiIl discuss several algorithms that have
been developed for this purpose. I will first review the ad-
vantages and disadvantages ofother competing methods
and then consider in detail a commercially available video-
based system. I will then describe algorithms developed
for the analyses of two classes ofeye images: (1) images
of the pupil and other anterior structures that may be im-
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aged directly, and (2) images of the retina obtained from
a video ophthalmoscope.

A Short Survey of Eye-Tracking Methods
While a number of eye-movement recording methods

have been developed over the years (MuIler, Cavegn,
d'Ydewalle, & Groner, 1993; Young & Sheena, 1975), all
involve some compromises, and no method has been de-
vised that is applicable to all situations. The search coil
method (Robinson, 1963) is one of the few methods that
offers both high accuracy (-1' ofarc) and large dynamic
range. In this technique, a small magnetic sensing coil is
affixed to the subject's eye, which is used to detect ex-
ternally applied magnetic fields from large inducing coils
surrounding the subject. In Robinson's original method,
three mutually perpendicular inducing fields are modu-
lated at different frequencies, and the orientation of the
sensing coil (and the eye) is computed from the relative
amplitudes of these frequencies in the sensor output. A
number of significant improvements were introduced by
Collewijn (1977), who produced a rotating external field,
transforming the problem to one of temporal phase mea-
surement.
While the search coil method does produce excellent

data, it requires actually putting something in the eye,
which can pose unacceptable risks when used in naive
subjects without medical supervision. The dual-Purkinje
image tracker (Crane & Steele, 1978) offers comparable
accuracy (albeit over a smaller range of movement) and
is noninvasive but is an expensive and complicated special-



purpose device, which may be beyond the means ofmany
small laboratories. It also requires stabilization of the
head and is therefore unsuitable for infant research. De-
vices that measure scleral reflectance (limbus trackers)
are simple and inexpensive but have more limited accu-
racy (Carmody, Kundel, & Nodine, 1980; Eadie, Pugh,
& Heron, 1994; Muller et al., 1993).
In recent years, a number ofsystems have appeared on

the market that utilize video images ofthe anterior struc-
tures of the eye. Typically, the video signal is fed into
special-purpose electronic circuits that segment and lo-
calize large structures in the image, such as the pupil and
the corneal reflex or first Purkinje image. These systems
offer the advantages of being noninvasive and relatively
simple to set up and use. The resolution of such systems
is typically a fixed fraction ofthe video image size; there-
fore, the ultimate resolution depends on the magnifica-
tion with which the eye is imaged. Increasing the optical
magnification increases both the resolution and the ac-
curacy but, in turn, requires that the head be stabilized in
order that the eye remain in the camera's field of view.
Alternatively, small "lipstick" cameras can be mounted
directly on the head using a headband or helmet. Either
way, the amount of optical magnification is limited by
the size of the pupil: The magnification cannot be in-
creased beyond the point at which the pupil fills the en-
tire image. This observation leads naturally to the concept
of optical gain, which I define to be the number ofpixels
of image motion per unit eye rotation. For a 6-mm pupil
imaged with a standard video camera, this turns out to
have a value ofapproximately 6 pixels per degree ofhor-
izontal eye rotation. (The value for vertical eye rotations
will be halfof this, due to video interlace; see section on
video acquisition below.)

An Example Commercial System
While the imaging configuration and optical magnifi-

cation determine the raw images that the system has to
workwith, the ultimate resolution and accuracy depend on
how the images are processed. As an example, I will de-
scribe a commercial system made by ISCAN (Cambridge,
MA), simply because it is one with which I have had some
direct experience. While the precise algorithms used by
the device remain undisclosed proprietary trade secrets,
the overall approach can be inferred from the behavior of
the device under use. This device is capable of locating
both the (dark) pupil and the corneal reflex (CR.). It
takes a signal from a camera as input, and it outputs a video
signal that is similar to the input but that may have addi-
tional information superimposed. The front panel con-
trols consist of a "threshold" switch, a cross-hair enable
switch, and two threshold level knobs. When the cross-
hair enable switch is set, the output video image is over-
laid with a pair of vertical and horizontal lines (the
"hairs"), which intersect at the estimated locations ofthe
pupil and corneal reflex, thereby providing a simple vi-
sual check that the unit is functioning properly. The pupil
threshold knob sets the gray level below which pixels are
classified as part of the pupil, whereas the CR. thresh-
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old knob sets the gray level above which pixels are clas-
sified as part of the reflex. When the threshold switch is
flipped, pixels that exceed threshold are displayed as white
in the image output of the device. The experimenter
slowly increases the pupil threshold level adjustment
until all of the pixels in the pupil appear white. Often,
other dark pixels outside of the pupil (caused by such
things as eyelashes or shadows of the eyelids) will also
exceed the threshold; I do not know whether or not these
are included by the device, but the behavior ofthe cross-
hair suggests that they are (unfortunately). Setting the
proper level for the CR. is somewhat more difficult; be-
cause the CR. is very bright to begin with, the pixels that
exceed the threshold set by the knob (which are dis-
played as white) are often impossible to distinguish from
their normal levels. Because of this difficulty in observ-
ing the thresholded pixels, I have found it easier to make
this adjustment by observing the cross-hairs as the thresh-
old level is varied and to stop when the cross-hairs are
stable and centered on the reflex. As with the pupil, spu-
rious bright pixels from other parts of the eye (most no-
tably, specular reflections from the moist surface of the
eyelid) are a problem. The device is equipped with a "CR.
limit" switch on the rear panel, which supposedly re-
stricts the area over which the CR. computation is per-
formed, but the details are unavailable. At any rate, for
each input field ofvideo, the device selects pixels that it
deems to belong to the pupil and the CR. and outputs a
set of coordinates for each. No details are available con-
cerning how the coordinates are computed from the sets
of pixels, but a centroid calculation seems like an obvi-
ous choice. (For any set ofpixels from a raster, the coor-
dinates of the centroid are easily computed as the means
of the coordinates of the individual points.) The coordi-
nates returned by the ISCAN tracker are quantized to an
integer number of pixels. Because no subpixel estima-
tion ofposition is done, the resolution of this device can
be easily computed as the inverse of the optical gain de-
scribed above: The optical gain of 6 pixels per degree of
visual angle results in a resolution of 10' of arc.
Depending on the noise level of the camera, this may

not represent the limiting resolution imposed by the im-
agery itself. Let us imagine that the pupil has a diameter
of 200 pixels in a particular imaging configuration and
that there is no camera noise. In this case, the pupil area
will be made up of roughly 30,000 pixels, each ofwhich
makes an equal contribution to the centroid calculation.
Imagine that a tiny eye movement is made that causes a
single pixel at the right-hand margin of the thresholded
region to fall above threshold. Relative to the original cen-
troid location, the new right-hand pixel has a coordinate
of 100 (half the pupil diameter) and therefore contributes
a term with value 100/30,000 to the centroid calculation.
In the absence of camera noise, we might therefore ex-
pect to compute the centroid of this region with a reso-
lution of approximately 0.003 pixels. Even though real
cameras are not noise free, it seemed unlikely that cam-
era noise alone could account for a decrease in resolution
ofmore than two orders ofmagnitude, and this observa-
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tion prompted my first attempts to improve resolution
and accuracy through software image processing.'

METHODS

Video Acquisition
The biggest technical challenge in the construction of

a software-based video eye tracker was the real-time dig-
itizationand storage ofthe video stream from the eye cam-
era(s). Frame-grabber boards have no problem digitizing
video, but the number of frames that can be grabbed is
limited by the amount of memory on the board; many
boards only have enough memory for a single frame. It
is therefore imperative that the video data be transferred
to a mass-storage device, such as a disk. If the frame
grabber has sufficient memory to buffer an entire trial,
this may be done between trials; however, since this adds
a delay that is likely to be greater than the duration ofthe
trial itself, a much better solution is to store the data di-
rectly to disk as it comes in.
While specialized (and expensive) devices to do this

have existed for some time (usually consisting of paral-
lel disk arrays), the problem has become vastly more
tractable with the recent advent ofintegrated circuits that
perform real-time image and video compression. This is
a rapidly changing field, and the "standards" are still
evolving. This paper will focus on the approach I have
followed, which is to treat the video stream as a sequence
of still images, each of which is compressed using the
still-image compression algorithm specified by the Joint
Photographic Experts Group (JPEG) (Pennebaker &
Mitchell, 1993). Although the JPEG still-image format
has been fairly well standardized, the use ofJPEG for the
encoding of dynamic video ("motion JPEG") is some-
thing that has been approached somewhat differently by
each vendor. So, while most of the competing products
offer the same sorts of features, compressed movie files
cannot generally be exchanged, and, in most cases, the
formats are proprietary and can only be decoded using
the vendor's software. In the long term, it is likely that
most video will be encoded using a method that exploits
the redundancy between successive frames, such as that
recommended by the Motion Picture Experts' Group
(MPEG); currently, however, real-time MPEG encoders
are substantially more expensive than motion JPEG sys-
tems. It is expected that the next few years will see con-
tinued rapid development in this area, and we can look
forward to better and less expensive solutions.
There are two major benefits conferred by the appli-

cation ofcompression technology to the problem ofvideo
acquisition. First, the reduced data rate ofthe video stream
is brought within the capabilities of standard disk drives
and controllers; typically, a compression factor of 10 can
be obtained without significantly degrading the perfor-
mance of the eye-tracking algorithms described here
(Mulligan & Beutter, 1995). Second, this same reduction
in the size of the data means that the number of movies
that can be stored on a disk of a given size is similarly
increased.

In the present implementation,camera images are stored
and subsequently retrieved using hardware JPEG com-
pression (XVideo card with RTV software, Parallax
Graphics, Santa Clara, CA). The camera signal is a stan-
dard NTSC television signal (see Hunt, 1987), each frame
of which is made up of two "interlaced" fields. The first
field consists of all the odd-numbered lines from the
image (numbering starts at 1); the second field consists
ofthe even-numbered lines. These two fields are acquired
sequentially and compressed and stored independently
by the hardware. To maximize temporal resolution, all
analyses are performed on field images, and the final re-
sults are corrected for the fact that the two field rasters
are spatially offset by half of the field line spacing.

Image-Processing Software
All of the image-processing operations described in

this paper were implemented using an in-house interpre-
tive system that has been dubbed "QuiP" (Quick Image
Processing). This system consists of a set of C libraries
containing functions that perform the basic image-
processing functions, which are coupled to a text inter-
preter that allows fast prototyping of new algorithms.
The system is highly portable and has been installed on
Sun, Silicon Graphics, and Cray UNIX systems, as well
as the Apple Macintosh. For purposes ofcomparison, the
translational registration of 1,024 fundus images (de-
scribed below)was computedon a SiliconGraphicsONYX
computer and again on a Cray C90. This task required
63.8 sec of central processing unit (CPU) time on the
Cray C90 (1:25 elapsed time) and 1,013 sec ofCPU time
on the ONYX (19:00 elapsed time). In a previous bench-
mark test ofQuiP (Mulligan, 1996), the performance of
Cray C90 was approximately a factor of 60 better than
the SGI machine; here, the improvement is only a quarter
ofthat. This is most likely due to the fact that the previous
benchmark was tailored to reflect the vector-processing
performance, whereas the actual eye-tracking applica-
tion involves additional script interpretation and resource
management, which do not benefit from the Cray's spe-
cial vector-processing hardware. On workstation comput-
ers, the interpreter overhead has always been insignifi-
cant relative to the time spent actually processing the
image data. The current benchmark results suggest that
this may no longer be true on the C90 and that some ap-
plications would benefit significantly from being com-
piled instead of interpreted.

Pupil-Tracking Algorithm
The analysis ofpupil images consists of several steps.

The general approach is similar to that I have ascribed to
the ISCAN device, but several additional processing steps
have been incorporated to improve accuracy. The pupil
is first crudely located, and the surrounding extraneous
image regions are masked off. The image is blurred be-
fore thresholding to reduce the effects ofnoise. Centroids
are computed using floating-point arithmetic in order to
obtain subpixel resolution. The remainder of this section
will describe the process in detail.



The anterior structures ofthe eye are illuminated with a
broad infrared beam derived from a quartz-halogen lamp
and are imaged using a CCD camera (COHUModel 6500)
equipped with a 75-mm lens that is mounted on a 30-mm
extension tube to allow close focusing. (This armngement
avoids the optical degradation of the image that occurs
with teleconverters and close-up lenses.) The raw image
data consist of video fields having 240 lines and 640
columns. Each image is first cropped to a width of 512
columns and padded at the bottom to a height of256 lines,
using a value that approximates the gray level of the sub-
ject's iris. (This valuemust be hand-tuned for each new sub-
ject.) Because this field image contains only half the lines
of a full frame, this picture appears squashed and is there-
fore subsampled in the horizontal dimension by a factor of
2. (This step might be omitted whenmaximum accuracy is
desired, but it is convenient here both because it halves the
amount of subsequent computation and it results in natural-
looking intermediate images.) This subsampling is per-
formed using a Fourier domain method that eliminates the
possibility of aliasing (Watson, 1986).The pixel values are
then divided by 256 to fall between 0 and I.
Figure Ia shows a typical input image of the front of

the eye. To eliminate interference from features outside
the pupil region, a crude localization of the pupil is first
performed, and a region of interest slightly larger than
the pupil is selected for further processing. This is done
as follows: The input image is first blurred, using a Gaus-
sian filter with a standard deviation of a = 6.4 pixels
(Figure Ib). A threshold is then applied that selects the
pixels in the blurred image whose value falls below 0 =
0.1 (Figure lc). (We arrived at these and many of the sub-
sequently reported parameter values through trial-and-
error testing.) The blurring ensures that small dark fea-
tures, such as eyelashes, are not included in this selection.
As can be seen from Figure lc, one problem with the
image at this stage is the "hole" caused by the CR. This
is eliminated by another coarse blur (o = 5 pixels); the
blurred image is renormalized to the range 0 to I, and
pixels with a value above a threshold of 0 = 0.3 are se-
lected, resulting in a roughly circular mask slightly larger
than the pupil. This mask is then used to select the pupil
portion of the original image (Figure Id). Pixels that fall
outside of the selected region are set to a level that ap-
proximates the level of the iris in order to minimize dis-
continuities at the mask border.
Next, the CR. is localized using a matched filter for

coarse localization. This filter is constructed in the space
domain as a light disk approximately the size of the re-
flex (5 pixel radius), with a dark surround (6 pixel radius)
that attenuates the response to low spatial frequencies.
(The surround is restricted to a narrow I pixel annulus in
order to give a uniform response even when the reflex is
near the margin of the pupil.) This filter is applied to the
image (Figure Ie); the result is renormalized to the range
0-1 and is then thresholded to select pixels whose values
exceed a threshold of0 = 0.9. This process selects a small
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number ofpixels at or near the center ofthe reflex. A small
circular mask is grown about these pixels by applying
another blur-threshold step (o= 13pixels, 0 = 0.7), and
this mask is then applied to the image (Figure I f).
The position of the masked reflex is computed with sub-

pixel accuracy by computing an intensity-weighted cen-
troid from this image. This is done in the followingstraight-
forward (ifsomewhat inefficient) way:An image is created
in which the value at each pixel is its x-coordinate. This
image is multiplied pixel-wise by the image whose cen-
troid we wish to compute, and the sum over the resulting
product image is then taken. This sum is then normalized
by the sum of the input image, to yield the x-coordinate
ofthe centroid. It should be noted that if the input image
consists ofonly Is and Os (as in a thresholded image), then
this procedure simply computes the mean x-coordinate.
When the image is made up ofvarying gray levels (as in
Figure If), it produces a weighted average, with the bright-
est pixels making proportionately larger contributions.
The y-coordinate of the centroid is obtained in an analo-
gous fashion.
Now that the C.R. has been localized, it is "erased" from

the image of the pupil by resetting the pixels in the mask
area to the mean pupil value.? This image is shown in
Figure Ig. The tiny fourth Purkinje image is then local-
ized using a procedure similar to that just described: A
matched filter (center radius = I, surround radius = 3)
is applied (Figure lh), and a small mask is grown about
the maximum and then applied to the input exactly as
was done for the CR. (Figure Ii). The position is again
computed as the intensity-weighted centroid of this image.
After the fourth Purkinje image has been localized, it is
also "erased" from the input (Figure Ij).
Finally, the pupil is localized. Gaussian blur (o = 6.4)

is applied to reduce the effects ofnoise (Figure lk), and
the blurred image is thresholded (0 = 0.25). The result-
ing image is shown in Figure II. A centroid calculation
is applied to this image to produce the final estimate of
pupil position.
The accuracy ofthis procedure has been tested by run-

ning the algorithm on a series of synthetic images ob-
tained by applying subpixel translations to a single source
image (Mulligan & Beutter, 1995). These simulations
showed an average error magnitude ofless than 0.05 pix-
els for localization ofboth the pupil and the CR., which
was roughly constant for compression ratios ranging from
I (no compression) to 20. This corresponds to an eye ro-
tation of about I' of arc for the pupil and represents the
limiting performance of the recovery algorithm. Other
factors, such as uncompensated head movement and
camera noise, may make the actual accuracy somewhat
less than this. Current work is examining simultaneous
measurements based on images ofboth the pupil and the
retina (next section), in order to distinguish between the
subjects' fixational errors (which should be correlated
in the two measurements) and random error introduced
by the method.
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Figure 1. Series of images showing various stages in pupil image processing. See text for details.

Fundus-Tracking Algorithm
Although pupil tracking is a sensible technique for

many applications, the optical gain is limited by the size
ofthe pupil, as noted above. By imaging the retinal blood
vessels, much greater optical gain can be obtained. Reti-
nal imaging has an added advantage ofgreater immunity
to head movement: Small movements ofthe head produce
large movements of the entire pupil image but virtually
no movement ofthe retinal image as long as the direction
ofgaze is fixed. While this may seem counterintuitive at
first, the following argument may help to clarify the sit-

uation: Imagine first that the subject fixates the center of
the ophthalmoscope.The ophthalmoscope will then pro-
duce an image of the subject's fovea. If the head is then
moved, the subject will make a small compensating eye
movement in order to maintain fixation, and the ophthal-
moscope will continue to produce an image ofthe fovea.
The situation is slightly different in the actual set-up: The
subject fixates a display nasal from the ophthalmoscope,
which produces an image of the optic disk. In this case,
when the subject maintains fixation on the display in the
presence of head movement, there would be no move-



ment ofthe ophthalmoscope image if the display were at
the same distance as the ophthalmoscope; a difference in
the distances will introduce a small amount of parallax.
Consider the case of a lateral head movement of 1 mm.
For the pupil-imaging set-up described above, this will
produce an image translation of approximately 33 pix-
els-a displacement of the pupil image such as would
occur with a rotation in excess of50! For the retinal imag-
ing set-up, the ophthalmoscope objective is located at a
distance of 300 mm from the subject's eye, so the lateral
shift of the eye generates a parallax of 1/300 radians, or ap-
proximately 12' ofarc. This would be the induced shift if
the eye were fixated at optical infinity. For closer display
distances, the error will be the parallax between the display
and the ophthalmoscope: There will be no induced shift
for a display distance of300 mm, 6' ofarc for a display at
600 mm, 8' of arc for a display at 900 mm, and so on.
Images of the fundus were obtained using a table-top

video ophthalmoscope (see Appendix A), which has a
field of view of 10°; given the camera resolution of 240
lines per field, this corresponds to slightly more than 2'
of arc of eye rotation per pixel ofvertical image displace-
ment, a factor of 5 better than the pupil-imaging set-up.
Because only a small fraction of the retinal illumination
is reflected back out ofthe eye, and because ofsafety con-
siderations that constrain the amount of light that can be
used to illuminate the fundus, a very sensitive camera is
required. The camera chosen incorporates an image inten-
sifier (COHU Model 5510). The intensifier adds its own
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peculiar form of impulsive noise to the image. A typical
image obtained from this apparatus is shown in Figure 2.
Previous investigatorshave obtained registration of fun-

dus images by locating easily identifiable features, such
as blood vessels (Womson,Hughes, & Webb, 1987).A dif-
ferent approach was adopted here-namely, to correlate
the entire image with a reference template. The intuition
behind this approach was that greater accuracy would be
obtained by using the whole image, since local camera
noise would have a smaller overall impact. Using a single
fixed template, instead of registering each image to the
previous one, avoids cumulative errors. The range ofeye
positions that can be tracked is relatively small, since
large movements of the eye will displace the eye's nat-
ural pupil away from the system's artificial pupil. Nev-
ertheless, the tracking range does exceed the field of view
of the system, and so the template image must be made
up as a mosaic of images captured during different fixa-
tions. The first step in using this instrument to measure
eye position is therefore the construction of a template
for each subject.
The same registration procedure is used in the construc-

tion of the template as in the analysis of experimental
data, the only difference being that experimental data are
registered against a fixed, precomputed template, whereas
the template construction process is a "bootstrap" pro-
cedure in which the template is built up incrementally.
In either case, the preprocessing steps and registration
method are the same. The input video fields (248 X 640)

Figure 2. Typical image of the optic disk obtained from image-intensified camera after decompres-
sion. Under close inspection, JPEG block artifacts may be observed. Isolated small bright spots are
most likely scintillation noise from the image intensifier.
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are first cropped horizontally and zero-padded vertically
to a size of 256 X 512. They are then reduced to a size
of 128 X 128 after zeroing all frequency components
above theNyquist limit of the smaller size (Watson, 1986).
This computation and all succeeding computations are
performed using single precision (32 bit) floating-point
arithmetic.
Before attempting to register the images, it is impor-

tant to first remove features that do not move with the
retina, which arise from nonuniformities ofthe retinal il-
lumination as well as spatial variations in camera sensi-
tivity. This is done by computing the mean image from a
series encompassing a large number of fixations over the
range to be tracked. This image is saved and subtracted
from each input image. This ensures that areas not illu-
minated have a value of zero and that features are repre-
sented as positive and negative excursions from the
mean. This also eliminates dc signals from the illumi-
nated region and helps ensure that only the features ofin-
terest will be matched and not simply that the stationary
illuminated region will match with itselffrom one frame
to the next. The images are then embedded in the center
of a 256 X 256 staging area. In addition to the image rows
that were zero-padded prior to size reduction, there are a
few lines at the bottom of the image that do not contain
valid camera data (a peculiarity of the camera/digitizer);
these lines are discarded, making the inset area a 116 X
128 rectangle.
A band-pass filter is then applied to the image. This fil-

ter is a compromise between two conflicting goals: On one
hand, wewould like to low-pass filter the image to reduce
the high-frequency JPEG artifacts; on the other hand, we
would like to high-pass filter the image to accentuate
retinal features, such as the blood vessels, and eliminate
residual effects of illumination variations' By trial and
error, I have found that a difference-of-Gaussians filter
having standard deviations of9 and 13pixels works well.
The filter is applied in the Fourier domain by computing
the discrete Fourier transform (DFT) of the input and
multiplying it by the DFT ofthe filter (which is precom-
puted and stored).
The filtered image is then registered to the template

using cross-correlation. For computational efficiency, this
is done in the frequency domain by multiplying the DFT
of the input (obtained in the last step) by the complex
conjugate of the DFT of the template. (Complex conju-
gation is imperative, or else one obtains the convolu-
tion.) Taking the inverse DFT of this product yields a
space-domain representation of the correlation.
Because the input image is embedded in a surround of

zeroes, only the corresponding region of the template is
relevant for computing the cross-correlation at a given
offset. The raw cross-correlation may obtain large val-
ues at nonmatch locations simply because the template
has more energy there. We therefore normalize the raw
correlation values by the local norm (square root of sum-
of-squares) ofthe template. This is done efficiently by first
computing the square of the template, convolving this

image with the input window, and taking the square root.
The raw correlation image can then be divided pixel-
wise by this image to yield the normalized correlation. The
image coordinates at which the maximum value is found
correspond to the optimal shift to bring the input into
registration with the template.
Subpixel resolution is obtained by considering the 3 X

3 neighborhood ofpixels surrounding the maximum pixel
in the cross-correlation image. A least squares fit of a
quadratic surface is fit to these nine points, and the pa-
rameters of the resulting surface are used to calculate the
position of the maximum of the surface. Complete de-
tails are given in Appendix B.
Before analyzing experimental data, this registration

procedure is used to construct a template. A sequence of
images suitable for "growing" the template is obtained
by having the subject track a fixation point that moves in
an expanding spiral from the center of the stimulus dis-
play.The first image is taken to be the initial template. The
second image is then registered with respect to the first.
After this registration has been accomplished, the new
image is integrated into the current template. This is
done by translating the new image by the computed off-
set and adding the translated image into an accumulation
buffer. Noninteger pixel translations are accomplished by
taking the Fourier transform and multiplying each coef-
ficient by an appropriate complex phase factor (see Brace-
well, 1965, for a discussion of the Fourier shift theorem).
Because different input images cover different parts of
the template, different parts ofthe template will be added
to by different numbers of input images, and so each
pixel of the template accumulator must be normalized
appropriately. This is done by maintaining a separate
"count" image: Each time an input image is translated, a
"mask" image consisting of a rectangle of ones (repre-
senting the valid input data) is translated by the same
amount and added to the "count" accumulator. The tem-
plate is obtained by dividing (pixel-wise) the template
accumulator by the count accumulator. Pixels in the count
accumulator that have a value ofzero at this step are first
changed to a value ofone, to avoid divide-by-zero errors;
the template accumulator necessarily also has a value of
zero at these locations. The template used for registra-
tion is constructed from translated versions of the band-
pass filtered images, but the same translations are also
used to construct an image from the unfiltered images,
to produce a natural-looking image and perhaps reveal
high-frequency details not visible in the individual im-
ages (Figure 3).
I have tested the accuracy of this procedure using an

input sequence consisting ofa series of subimages taken
from the template in Figure 3. Subimages of size 128 X
128 were cropped from the template at a series of loca-
tions taken from a 32 X 32 grid. The spacing between
adjacent sampling grid locations was 3 pixels, and an 18-
pixel border at the edge of the template was skipped over.
Each ofthese images was then registered to the precom-
puted template, as described above. The horizontal and
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Figure 3. Template image constructed from unfiltered input images using
displacements computed from band-pass versions.

vertical registration errors were computed by subtract-
ing the known offsets from the estimated values. These
data are shown in Figure 4a.
Several features may be noted in Figure 4a. It should

not be surprising that the worst performance occurs for
subimages taken from the upper right-hand part of Fig-
ure 3, because that is the area of least detail; we cannot
expect any procedure to do a good job ofregistration when
there is scant input data. Second, for the subimages taken
from the upper portion of Figure 3, we see that the ver-
tical errors are larger than the horizontal errors. This fact
is easily understood by noting that the principal feature
in this region is the thick blood vessel that exits up and
to the left from the disk. Similarly, the principal feature
in the right-hand portion of Figure 3 is the smaller, nearly
horizontal vessel that heads off toward the lower right-
hand corner; here, we see that the largest errors are in the
horizontal dimension.
Figure 4b shows amore detailed view ofthe errors from

subimages, including a substantial part of the disk,
where registration accuracy is good. The main point to
note here is that the errors are not independent from point
to point (as might be expected ifthey arose from numer-
ical round-off error) but vary smoothly and systemati-
cally across the image. The subpixel estimation proce-
dure (Appendix B) uses the neighboring values of the
correlation and interpolates to find the maximum; be-
cause only integer shifts were used for this test, any asym-
metries in the flanking values will bias the estimate away
from the true integer value. The subpixel estimation pro-

cedure employed here would not be expected to work for
a white-noise image, where the autocorrelation function
is a single delta function at the origin and the flanking
values carry no special information. Itworks here because
of the low-pass component of the filter that we have ap-
plied to the images: For a single sine-wave grating, the
autocorrelation is also a sinusoid, and we would expect
the subpixel estimation procedure to work well. For the
more complex template image, residual asymmetries in
the autocorrelation after filtering are presumably respon-
sible for the errors seen in the lower panels of Figure 4.
Because ofthe systematic nature of these errors, the data
in Figure 4 could, in principle, be used to construct a cor-
rection table.

Ocular Torsion
Image-basedmethods for eye-movement tracking have

the advantage that the image data allow the recovery of
ocular torsion (rotation of the eye about the line of sight).
Methods to do this using images of the iris have been
demonstrated that can have a resolution as small as 5' of
arc (Curthoys et al., 1992; Bos & de Graaf, 1994; Groen,
Nacken, Bos, & de Graaf, 1996). Measurement of tor-
sion is particularly important in free-head situations, be-
cause there is a torsional component of the vestibulo-
ocular reflex (Belcher, 1964;Merker & Held, 1981;Miller,
1962). Small torsional movements also result when a
subject is stimulated by rotational movement in the image
plane (Kertesz & Jones, 1969; Merker & Held, 1981;
Wade, Swanston, Howard, Ono, & Shen, 1991). In addi-
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Figure 4. (a) Horizontal (x) and vertical (y) registration errors for 128 X 128 subimages cropped from the tem-
plate image shown in Figure 3, as a function of position (in pixels), relative to the center ofthe image. One pixel
corresponds to approximately 4 arc minutes of visual angle. (b) A subset of the data shown in panel a is plotted
with magnified relief.

tion to these systematic variations of torsion, there are
slow, random variations in the eye's torsional state hav-
ing excursions in excess of 1° (Van Rijn, van der Steen,
& Collewign, 1994).
Ocular torsion can be important even when it is not the

primary subject of study, because it can introduce arti-
facts into measurements of the direction of gaze. One
might think that systems that track the pupil center and!
or the Purkinje images would be blind to torsional move-
ments, but, in fact, a small amount of cross talk is pres-
ent. This is due to the fact that these devices track the op-
tical axis of the eye, which is generally deviated from the
visual axis of the eye by 4°-r (Carpenter, 1977, p. 112).
In a subject whose visual axis is directed inward from the
optical axis by an angle a, a small extorsion about the vi-
sual axis will cause the optical axis to be deviated down-
ward by an angle that is approximately a times the mag-
nitude ofthe torsion in radians. Thus, for a typical subject
for whom a = 5°, a 1° extorsion will produce a "false"
vertical eye rotation of 5' of arc. This effect is small, but
it may become significant when high accuracy is desired.
Similar reasoning shows that torsion will also introduce

substantial artifacts into the fundus-tracking scheme de-
scribed above, due to the fact that the landmarks being
tracked are eccentric (approximately 15° nasal) with re-
spect to the fovea. Thus, a torsion of 1° (0.017 radians)
about the line of sight will produce a vertical translation

in the disk image of approximately 0.017 X 15°, or
roughly 15' of arc, an amount well above the noise level
of the system.
The problem oftorsion estimation from retinal images

can presumably be approached using many of the same
techniques developed by Groen et al. (1996), with a few
differences. Groen et al. used the pupil center as the cen-
ter of rotation, but the retinal image has no such land-
marks-that is, no landmarks that are related to the center
of rotation. Groen et al. corrected for errors in locating
the center of rotation by independently registering indi-
vidual features in the iris and then fitting the resulting
measurements with a parametric function from which
the true center of rotation could be derived. Similarly, it
should be possible to pick a set ofsmall features in the reti-
nal image, such as blood vessel bifurcations, and inde-
pendently solve for translation which best maps each one
to its corresponding position in the template. By analyz-
ing the pattern ofdifferences between the individual fea-
ture translations, the overall rotation of the image can be
estimated. This estimate ofthe rotation can then be applied
to the input image, and the process can be repeated iter-
atively until all of the feature translation vectors agree.
As a first attempt, something simpler was tried: For each

input image to be registered, a number of small rotations
were simulated by applying bilinear interpolation to the
input, and the rotated images were then registered (for



translation only) with the template, as described above.
For each trial rotation, the maximum value of the nor-
malized correlation was retained. When plotted as a func-
tion of rotation angle, the resulting data are well fit by a
quartic polynomial (although this author has been unable
to divine a theoretical reason why they should). The ini-
tial tests that determined that a quartic polynomial pro-
vided a good fit were done with 33 samples of rotation
angle; the fits were so good that the torsion estimates were
not substantially changed when the number of samples
was reduced to 5, and this is the number of samples that
was used in the simulations described below. The param-
eters of the best-fitting (in the least squares sense) quar-
tic were determined using the singular value decomposi-
tion in a manner analogous to the localization of the
maximum described in Appendix B. The rotation angle
corresponding to the maximum of the quartic is then
found from the parameters using an iterative procedure.
This process was tested using a method similar to that

used to assess the translation-only performance of the
cross-correlation procedure: A series of images having
known torsions and translations was created from the
template. A 16 X 16 grid of displacements was used to
bring different portions of the template to the center of
the image. The grid was chosen to consist of translations
that could be recovered with high accuracy (see Fig-
ure 4). After each translation was applied to the tem-
plate, a series of rotations was applied using bilinear in-
terpolation. The range of rotations was ±2°, sampled in
steps of 0.25°. Thus, a total of 4,352 images were com-
puted and stored and were subsequently passed to the
modified tracking program that estimated torsion and
both horizontal and vertical displacements for each
image. The average error across position and applied ro-
tation was computed to be -0.027°, with a standard de-
viation of 0.114°. This amount of error is on a par with
the resolution of methods that use video images of the
pupil (Bos & de Graaf, 1994; Curthoys et a!., 1992;
Groen et aI., 1996).
For many ofthe positions sampled, the error in the es-

timate of torsion either was relatively constant or varied
smoothly with applied rotation. This suggests that the er-
rors are not random but arise from the particular features
of the template in a systematic way, as was suggested in
the previous section for the translational errors. Simi-
larly, errors in the estimation of torsion vary smoothly
and systematically with position, and it may therefore be
possible to apply a systematic correction to produce a
large increase in accuracy.

CONCLUSIONS

Eye-movement tracking using video images of either
the pupil or the retina is a low-cost approach that is capa-
ble of high performance when off-line data analysis is
acceptable. New video compression technology allows
streams of video images to be acquired and stored on
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normal computer system disks. At low compression
rates, tracking accuracy is only slightly degraded and is
significantly better than many more expensive real-time
systems. Access to the raw image data makes possible
the measurement of ocular torsion, in addition to gaze
direction.
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NOTES

I. Since this work was begun, it has come to my attention that Sen-
soMotoricInstrumentsGmbH (Teltow, Germany)offers a real-timesys-
tem with subpixel image processing that claims a resolution of 15" of
arc; due to the high price of these instruments, the methods described
in this paper may still be of interest to many investigators.
2. While not as variable between subjectsas iris lightness, the mean

pupil value is affected by imaging variables, such as illumination in-
tensity, and is determined empiricallyfor each set of images.
3. The mean subtraction method of illumination compensation does

not take into account the pattern of illumination changes that occurs
with large eye movements due to partial occlusion of the illumination
beamby the eye's natural pupil.

APPENDIX A
Optical Design ofVideo Ophthalmoscope

The design of the prototype optical system is shown in Fig-
ure 5, which is a top view (not to scale). The primary illumina-
tion source is a quartz-halogen incandescent lamp IL, produc-
ing both visible and infrared radiation. The desired portion of
the spectrum is selected by Filter Fl. This image is relayed by
Lens L2 and Mirror MI and reformed on Mirror M2. Unlike
the other plane mirrors in the system, Mirrors MI and M2 are

C

<:
SE
Figure 5. Optical design of table-top video ophthalmoscope

(not to scale). See text for details.

not in the vertical plane and therefore bend the beam out ofthe
horizontal plane. Mirror M I bends the beam down onto the
margin of Mirror M2, which redirects the beam back into the
horizontal plane toward spherical Mirror M3. The subject's
pupil is imaged by spherical Mirror M3 onto the edge of Mir-
ror M2; Mirror M2 is positioned so its edge falls in the middle
ofthe image ofthe pupil, effectively dividing the pupil into sep-
arate entrance and exit pupils. Mirror M3 is used instead of a
lens as the final imaging element to eliminate the problem ofsec-
ondary surface reflections degrading image quality. Light from
the illumination beam enters through the upper halfof the sub-
ject's pupil and strikes the retina, illuminating a circular patch
corresponding to the subject's view ofMirror M3. (When visi-
ble illumination is used, the subject sees Mirror M3 uniformly
filled with light.) This light is reflected by the retina, some of
which passes back out the pupil. Light from the lower half of
the pupil is reflected by spherical Mirror M3 and passes over Mir-
ror M2, striking Mirror M4, which directs the beam to Cam-
era C 1. Thus, the light seen by Camera C1comes only from parts
of the pupil not illuminated by the incoming beam, eliminating
the problem of secondary reflections from the cornea. Mirror
M3 is located approximately two focal lengths from the sub-
ject's eye (SE) and Mirror M2, with an aerial image ofthe retina
being formed midway between Mirrors M2 and M3. This image
is viewed by Camera CI.

APPENDIXB
Subpixel Estimation of Correlation Maximum

Using the Singular Value Decomposition

Let {Xi,j} be the set ofpixel values centered on the maximum
for i,j E{-I,O,I}. We assume that the values can be well de-
scribed by a quadratic surface Yi.j' where

Yi.j = ai 2 + bij + ej? + di + ej + f. (I)

Equation 1 implies the following matrix equation that relates the
surface values Yi,j at the nine sample points to the parameters:

Y-l,-l

Y-l,O 1 1 1 -1 -1 1

Y-l,l
1 0 0 -1 0

i[~l
1 -1 1 -1 1

YO,-l 0 0 1 0 -1
Yo,o =0 0 0 0 0 (2)

YO,l
0 0 1 0 1
1 -1 1 1 -1

Yl,-l 1 0 0 1 0
Yl,O I 1 1 1 1

Yl,l

Now, we wish to obtain the parameters (a,b,c,d,e,f) for which
the correspondingYi.j have the minimum sum-of-squared devi-
ations from the data Xi,j' This is done using the pseudo-inverse
ofthe matrix in Equation 2, which may be obtained using the sin-
gular value decomposition (SYD). The subroutine svdcmp()
from the Numerical Recipes library (Press, Teukolsky, Yetter-
ling, & Flannery, 1992) conveniently performs the SYD of the
matrix. This is done once, and the results are saved for subse-
quent use with the companion routine svbksb(), which performs
"back-substitution" to transform successive sets of input data
into the desired six parameters.
The remaining step is to obtain the location of the peak ofthe

parametric surface from the parameters. This is done by differ-
entiating Equation 1 with respect to i andj:
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Weequate these two expressions for i, and solve for} to obtain:

i=

By symmetry, the corresponding solution for i is obtained by
exchanging a with c, and d with e:

This computation results in fractional values i and} (L\y and
L\x, respectively, ifthe normal conventions are followed), which
are added to the integer coordinates ofthe correlation maximum
to obtain a subpixel estimate.

(5)

(6)
. (2cd - eb)
1= (b2 - 4ac) .

. (2ae - db)
) = (b 2 - 4ac) .(3a)

(4a)

(4b)

(3b)

oy = 2ai + b}+ d,
oi
Z= 2c}+bi+e.

We set both equal to zero, and solve each for i:

i = _---'-(b-=-'i_+_d'"-)
2a

-(2c) + e)
b




