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Summary

the direct perceptual impact of such compensa-
tion has never been examined.

We examined the perceptual impact of plant

noise parameterization for Kalman Filter predic-

tive compensation of time delays intrinsic to
head tracked virtual environments (VEs). Sub-

jects were tested in their ability to discriminate

between the VE system's minimum latency and

conditions in which artificially added latency was

then predictively compensated back to the sys-

tem minimum. Two head tracking predictors

were parameterized off-line according to cost

functions that minimized prediction errors in (1)

rotation, and (2) rotation projected into

translational displacement with emphasis on

higher frequency human operator noise. These

predictors were compared with a parameteriza-
tion obtained from the VE literature for cost

function (1). Results from 12 subjects showed

that both parameterization type and amount of

compensated latency affected discrimination.

Analysis of the head motion used in the param-

eterizations and the subsequent discriminability

results suggest that higher frequency predictor

artifacts are contributory cues for discriminating

the presence of predictive compensation.

Introduction

Predictive compensation has been widely consid-

ered as a means for mitigating the consequences

of the time delays inherent to sensors, computa-

tion, and display rendering in virtual environ-

ment (VE) systems (Liang, Shaw, & Green, 1991;
Friedmann, Starner, & Pentland, 1992; Azuma &

Bishop, 1994; Mazuryk & Gervautz, 1995;

Nelson, Hettinger, Haas, Russell, Warm, Dember,

& Stoffregen, 1995; Wu & Ouhyoung, 1995;
Zikan, Curtis. Sowizral, & Janin, 1995; So &

Griffin, 1996; Kiruluta, Eizenman, & Pasupathy,

1997; Akatsuka & Bekey, 1998). While visually

mediated manual tracking experiments in VEs

have demonstrated the potential benefit of pre-

dictive compensation for human performance

(Wu & Ouhyoung, 1995; Nelson et al., 1995),

Predictive compensators for VEs operate on cur-

rent position and orientation measurements to

extrapolate future positions and orientations

based on kinematic and dynamic models of

motion via Kaiman filtering or other techniques.

Perfect prediction, in principle, should remove all

effects of sensor-to-display latency and intro-

duce no additional artifacts (e.g., noise or over-

shoot) to the VE system. Notwithstanding, we

presume that a practical predictor need neither

remove all latency nor avoid all artifacts, it need

only avoid making the user aware of those

compensator imperfections.

An important element of Kalman Filter (KF)

predictor implementation is parameterization of

the KF components. One approach has been

numerical optimization to find parameter sets

that minimize RMS error between the input body

part motion and predicted VE output (Liang et

al., 1991; Azuma & Bishop, 1994; Mazuryk &
Gervautz, 1995; Kiruluta et al., 1997). Parame-

ters can also be chosen from estimates or models

of sensor and human motion characteristics

(Liang et al., 1991; Friedmann et al., 1992;

Kiruluta et al., 1997).

Predictor performance has also been evaluated
on the basis of simple RMS error metrics

(Azuma & Bishop, 1994; Kiruluta et al., 1997;

Akatsuka & Bekey, 1998) as well as less rigor-

ously from the cursory appearance of co-plotted

motion and prediction traces (e.g., Liang et al.,
1991; Friedmann et al., 1992). However, as can

be observed from sample plotted measurement

and prediction records in the cited prior studies,

these parameterization and evaluation methods

may imply good performance while still failing

to capture fully the undesirable noise and over-

shoot artifacts introduced by prediction. Conse-

quently, we propose that these prior simple met-

rics are incomplete indicators of the user's

perceptual experience and are therefore insuffi-

cient for ascertaining the impact of predictive
compensation on human performance in VEs.



Thispaperpresentsnewworkin twoareasfor
VE predictivecompensatordesign.Oneis an
investigationof moresophisticatedcostfunctions
for optimizingKF predictorparameters.The
secondis anexperimentalmethodfor subjective
evaluationof candidatepredictorparameteriza-
tions. Theremainderof thispaperbeginswith
anoverviewof theKalmanFilterpredictorfor-
mulationanda discussionof parametersavail-
ablefor optimizingVE headmotionprediction.
Observationsof predictoroutputfrompre-
recordedmotiondataleadsto candidate
parameteroptimizationstrategies.A perceptual
experimentto comparethesubjectivedis-
criminabilityof differentKF predictorparam-
eterizationsisdescribednext. Finally,
implicationsof thepredictoroptimizationanaly-
sisandthediscriminabilityexperimentresultsare
discussed.

Kalman Filtering and Prediction

Kalman Filter Estimation

A general linear continuous-time dynamic proc-

ess to describe head (or other body part) motion
is

dx
= A(t)x(t) + w(t) (Eq. 1)

dt

where x(t) is the vector of system state variables,

A(t) is the system matrix describing the dynamic

relationships between the state variables, and

wit) is the driving plant noise (assumed zero-
mean Gaussian and uncorrelated between states).

Plant noise comprises random inputs that drive

displacements and their higher order time

derivatives. For a head tracked VE system, these

inputs include low-frequency volitional com-
mands as well as involuntary, higher frequency

signals such as those that might be driving head
tremors.

When sampled at uniform time interval
(1) is rewritten as the discrete system

x(k + 1) = tl_k)x(k )+ w(k)

h, Eq.

(Eq. 2)

in which k represents the sampled values at time

t = tk = kh. The state transition matrix, (1)(k), is

the matrix exponential of the scalar sampling
interval, h, multiplied by the system matrix,

2

A(t), evaluated at the beginning of the time

interval, t, :

tl)(k) = ehalt*) (Eq. 3)

Measurements reported by the sensor are

given by

y(k) =C(k)x(k) + v(k) (Eq. 4)

C(k) combines the states contributing to the

measurement vector y(k). v(k) is a noise vector,

again assumed to be zero-mean, Gaussian, and
uncorrelated between measurement channels, that
contributes to random variations in sensor

output. One typical source of sensor noise in
VEs is the electromagnetic interference associ-

ated with tracker induced image jitter.

Given the discrete-time expressions for the head
tracking and measurement processes of Eqs. (2)
and (4), the equation

[(k + 1) = Op(k)_(k)

+ K(k + 1)[y(k + 1) - C(k + l),c]l_k)_(k)]
(Eq. 5)

employs an observer, K(k + 1), to update an
estimate, i(k), of the state vector x(t).

The optimal observer, i.e., the Kalman Filter gain,
is calculated from

K(k + 1) = P(k + l)C(k + 1)r ×

[C(k + 1)P(k + l)C(k + l) T+ V(k + l)]-'
(Eq. 6)

where V(k + 1) is the covariance matrix of the

sensor noise, v(k + 1), and P(k + 1) is the covari-

ance matrix of the state estimator error,

_(k + 1)- x(k + l). ( × denotes matrix

multiplication.).

The error covariance, P(k + 1), is propagated

from the previous time step according to

P(k + 1)=¢l)(k)P(k)¢p(k) r + W(k)

×[C(k)P(k)C(k) r + V(k)]-'

xC( k )P( k )d_(k )T

(Eq. 7)

where W(k) is the covariance matrix of w(k).

After substituting for K(k)



P(k + 1) =

_l_(k)[l - K(k)C(k)]P(k)Cl_k) r + W(k) (Eq. 8)

Either of Eqs. (7) and (8)---or one of several

other equivalent forms--may be selected based

on computational performance (Brown &

Hwang, 1997, p. 219).

For the work described below, both plant and

sensor noise covariance, as well as the measure-

ment matrix will be considered time

invariant--i.e., V(k)= V and W(k)= W, and

C(k) = C. This leaves the KF gain matrix, K(k),

dependent only on updates of the error covari-

ance, P(k), and the state transition matrix, _l_(k).

Thus the KF procedure of Eqs. (5) to (8) repre-

sents an algorithm to compute an estimate of the

state vector from sensor measurements, y(k),

such that the expected value of the error,

_(k)- x(k), between estimated and actual states is

minimized in the least squares sense.

Prediction

From the solution over a single time step for the
differential equation in Eq. (1) provided by of
Eq. (3), and given that the expected value of the
noise wCk) is zero, the extrapolation from time
t = t, out to t = t, + r of the current state vector
estimate, £(k), is expressed likewise by

_(t k + r) = e rA"` '_(t k ) (_. 9)

In the special case that the extrapolation is across

an integral number of sample steps r = Nh,

Eq. (3) shows that

rA(tx ) eNhAIt_e = = doN(k) (Eq. 10)

Therefore, when predicted N steps ahead, the

state estimate is

_(k + N) = _N(k)r_(k) (Eq. ll)

State Space Model

Following Friedmann et al. (1992), Azuma and

Bishop (1994), Mazuryk and Gervautz (1995),

Kiruluta et al. (t997), and others, a simple,

purely kinematic model is selected to describe
the interrelation of motion states. Translational

motion is described independently in each Carte-

sian component, (x,y,z), by its position, p,

velocity, v, and acceleration, a. Beginning with

simple kinematic derivatives in the x

component,

[!,01I,1...,,rl-,, = o
dt a, 00JLa, J LW,,, j

= A3x 3 v x + w

La, J

(Eq. 12)

we note that only the noise component w,,_ can

affect the acceleration state a,. The state vector

for all three translational components, x, =

(p,v.a,,p,v,a, p,v ,a )T has system matrix,

A_ = 0 A3× 3 _Eq. 13)

0 0 A3× 3

such that

dx'----Lt=Atx , +w, (Eq. 14)
dt

where w is the vector of translational noise

components.

Rotational displacements in our system are

described in terms of the unit quaternion (e.g.,

Kuipers, 1999)

[ ]q i. =lusin(O/2)i|
q' = |q,j| |usin(O/Z)j| (Eq. 15)

Lq,kJ L" sin(O/ 2)kJ

where 0 is the twist angle about the instantaneous

rotation (i.e., Euler) axis u,. = (ui, uj, u k)'.

The rotational velocities are co,. = (c0 i, o9 j, co:k)'

and have as their respective time derivatives the

accelerations cf. r : ¢a,i, ayj, a.k)". From Chou
(1992), the quaternion rate and the rotational

velocities are related by

dq----z-'= 0.5q, ®co (Eq. 16)
dt

After carrying out the quaternion multiplication

3



denoted by ®, Eq. (16) can be restated as either

of the matrix multiplications

_q,md= 0.5Q,.o_,. = 0.5_.q,. (Eq. 17)
dt

in which

repeated model re-parameterization makes the
rotational component estimator a so-called

"Extended Kalman Filter" (e.g., Gelb, 1979).

Noise Parameterization for Head

Tracking

and

q -ql
-q , -q ,

Q,= " -q q
q. -q_

L-q, q, q.

I . . --CO=]

0 -(_0. -¢0 v

01_. 0 CO_. -0) V

f_= co -oJ_ 0 o_,

0)15 COy --COt
o

(Eq. 18)

(Eq. 19)

The system model dynamics of the two KF esti-

mator-predictors, _, and _,(k), are built solely

from expressions defining the time derivatives of
translational and rotational displacement. As

such, Eqs. (12) and (20) are purely kinematic

models; they cannot be re-parameterized to

reflect dynamic properties such as damping,
bandwidth, or more complex neuromotor control

elements. This leaves only the sensor and plant

noise covariance matrices V and W as design

parameters that might be tuned to adjust KF

predictor performance.

Once the nonlinear product terms in Eq. (17) are

linearized locally about the states' instantaneous

value at t = t,, the full rotational system model

for the 10 element state vector, x,, can be stated

as

d [ q'l [ O.SQ,04×3-l[qrl
-- _r * - -FW r

(Eq. 20)

= ArX r + w r

Since the dynamic systems in Eqs. (14) and (20)

are independent of each other, the translational

and rotational components are treated individu-

ally as separate predictors. One advantage in

separating the translational and rotational prob-
lems is that the system matrices to be manipu-
lated are smaller, with fewer zero entries.

Another advantage is that the different dynamic

system structures of Eqs. (14) and (20) require

wholly different estimation and prediction pro-
cedures. On one hand, the time-invariant trans-

lational system in Eq. (14) produces a time-
invariant state-transition matrix, _(k)= _, which

yields a simpler steady-state formulation for the
Kalman Filter of Eqs. (5) to (7) and the

extrapolation of Eq. (11). On the other hand,

because Eq. (17) is a nonlinear function of
instantaneous state values, the linearized rota-

tional system matrix A, does vary and therefore

must be updated regularly to compute the
instantaneous matrix exponential _(k). This

4

V and W may be identified in two general

ways. The covariances can be predefined from

prior calibration or from validated analytic
models. Otherwise, if these driving noises cannot

be well characterized by measurement or analy-

sis, the covariance matrices (like any other tun-

able KF model quantity) can be parameterized

through numerical optimization of estimator or

predictor performance against a cost criterion.
Because VE sensor noise parameters can be

measured by standard engineering techniques,

we predefined V and chose to investigate more

generally the parameterization of plant noise, W,
which at a fundamental level arises from

physiological muscle activity or neural signals,
and is therefore not easy to measure or model

analytically.

Following Azuma and Bishop (1994), sensor
noise covariance matrices for the translational

and rotational predictors, V, and V,_, were
respectively set to be diagonal with 0.01 m2 for
the three Cartesian and 0.0001 (dimensionless

units) for the four quaternion components.

Despite Azuma and Bishop's (1994) sensors
being based on a completely different technol-

ogy, off-line tests for our system's sensors and

environment showed little KF predictor sensitiv-

ity to changes in V, and V r parameterization

As in Azuma and Bishop (1994) and Liang et al.

(1992), we used Powell's method, a multi-dimen-



sionaldirectionsetoptimizationalgorithm(Press,

Flannery, Teukolsky, & Vetterling, 1986) to

parameterize W t and W,.. The procedure opti-

mizes parameters of a system of equations with

respect to the numerical performance of a func-

tional cost criterion selected by the designer for a

given input data collection. In our case, the

input data (with the specific exception noted

below) were position and quaternion

measurements recorded from a single subject

performing the same head and body movements

that would subsequently be required during the

discrimination study described below. The algo-

rithm output throughout was constrained to
produce diagonal (i.e., uncorrelated between

states), positive semi-definite covariance

matrices--negative auto-covariance has no

physical meaning and could cause unstable KF
behavior.

The translational plant covariance W, was opti-
mized using the same cost function as Azuma

and Bishop (1994): the simple RMS difference

over the sample interval between predicted and

actual measured position in each of the three

Cartesian coordinates. Informal analytic and

subjective observation showed limited predictor

sensitivity to W, parameterization. We therefore
focused our investigation on parameterization of

Wr.

One significant difference between our and

Azuma and Bishop's implementations (and

therefore also the parameter search) is that we

employ discrete-time state transition matrices for

updating both our translational and rotational KF

predictor designs; Azuma and Bishop used 4th

order Runge-Kutta numerical integration to

propagate their system. Informal observation

from simulations with Azuma and Bishop's data
sets indicate that our state transition matrix

approach yielded smaller RMS errors--possibly

due to the additional dynamics introduced by the

Runge-Kutta technique.

Twist Optimization

The first of three candidate W,. parameterization
cost functions considers RMS magnitude of the

twist angle, A0,, over the sampled movement

history (i = 1..... N) between actual and predicted
head orientations as in (Azuma & Bishop, 1994).

q,J =q_ ®(qi')-' (Eq. 21)

gives the quaternion difference between actual

(q_) and predicted (ql') head orientation

quaternions. (Kuipers, 1999) The twist angle is

calculated by

AO_: 2cos-'(q: ) (Eq. 22)

in which q_ is the scalar component of qi • The twist
cost function is simply

N

_Eq. "3)

VE Object Displacement Optimization

While angular error would be expected from the

projective geometry of rotations in a head

tracked VE to be an important indicator for pre-

diction accuracy, Eq. (22) does not account for
the twist error's direction. The cost function of

Eq. (23) consequently does not permit selective

weighting of errors in preferred directions.

Thus, we consider the translational displacement

components projected by the prediction error,

q_ , of Eq. (21).

Defining r = ri + rj + rk to represent the vector

from a point on the head mounted display

(HMD) to some spatial location or "object of

interest" in the VE, the translational displace-

ment of this object due to error in predicting

head orientation is given by the quaternion ver-

sion of rotational transformation (Kuipers, 1999)

z (_)-_ri =qi ®r® qi tEq. 24)

where the inverse is identical to the conjugate for

the unit quaternion qi • r, -- Arfi +/Xy,j + Azik, in
effect, gives the difference between the predicted

and actual location of a rendered object in the

VE due to qi as seen through the HMD. We
note that once an "object of interest" in the VE

is selected, the length scaling provided by Eq.

(24) allows direct comparison between transla-

tion and orientation induced predictor errors.

These comparisons generally support the obser-
vation for the dominance of orientation over

translation effects in head tracking predictor

5



accuracy (Zikan et al., 1995), especially for the

experimental task described below.
visible and interferes with perceived image
stability.

The cost function minimizing errors according

to the components of r,.'_ is

,,,r

where a, /3, and ), represent weighting factors to

selectively penalize error components in a Carte-
sian coordinate frame fixed to the HMD. For the

case in our VE system where the y and z com-

ponents lie in the plane of the HMD, ]3 and y

are weighted equally. From trigonometry, small

twist angle errors produce negligible x variation,

making a less important. The "object of

interest" for the parameterization is the virtual

target sphere in the experiment described below,
situated at r, 0.8 m in the x direction.

Noise Frequency Content Optimization

Predictive compensation, particularly when based

on the purely kinematic model described above,

exacerbates higher frequency image jitter in VEs,

regardless of whether the source is sensor or

plant noise. This exacerbation is due to the dif-

ferentiator action needed to generate velocity

and acceleration state estimates from displace-

ments. Figure 1 shows samples of increased jitter

for J,_, optimized predictor output in the 5 Hz

band and beyond as the look-ahead time (and
therefore the amount of differentiator action) is

increased for a subject yawing his head side-to-

side while wearing the HMD. This 5+ Hz spec-

tral band remains present when the subject stops
volitional movement and sits still but vanishes

when the HMD and sensor are removed from the

subject and supported instead on an inanimate

fixed base. Because of its frequency content, we

believe this human generated activity is associ-

ated with involuntary normal (so-called

"physiological") tremor of the head and body
(e.g., Desmedt, 1978). Under usual real envi-

ronment conditions (or in an ideal VE free of

sensor noise), the vestibulo-ocular consequences

of one's own physiological tremor are sub-
threshold and not visually detectable by the

human. However, under KF prediction, we pro-
pose that differentiation elevates tremor induced

image jitter to the point where it is clearly

6

To penalize high frequency jitter amplification

through parameterization of W, an optimization

can be carried out on a high-pass filtered version

of a pre-recorded motion history consisting pri-

marily of measured components that we want the

KF predictor response to suppress. The cost

function to minimize jitter amplification in the

HMD, similar to Eq. (25), is

where &i, &.;i, and &i are the high frequency KF

predictor orientation output projections into
Cartesian coordinates from Eq. (24) that should

be driven to zero. a, ]3, and y represent the

same directional weighting factors as in Eq. (25).
Although not examined in this work, another

reasonable alternative is a re-structuring of the

state matrix _l_r(k) to include low-pass filtering

which could attenuate high frequency jitter.

Optimization applied to Eq. (26) alone yields a

predictor that has good noise attenuation char-

acteristics but poor tracking performance

because of very low gains in KF matrix K(k).

To allow better response for low frequency voli-

tional activity, the image displacement cost of

Eq. (25) is reintroduced into a hybrid function

that combines overall tracking and noise

attenuation criteria. Because tracking accuracy

can come at the expense of increased KF

predictor noise, the hybrid cost function,
formulated as

Jd,,j, + b J_'_"

J'_ = a Ja_+pl--'-_r,,,,,J,,o_+_l,_r,_,,
(Eq. 27)

allows trade-offs between a and b_respectively
the relative importance attached to tracking

accuracy, J_,_,, and noise reduction, J ..........The
denominators of each term are scale factors--the

respective cost functions evaluated at the default
parameter values reported in Azuma and Bishop
(1994)--serving to make the weighting factors a
and b meaningful.
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Figure 1. Increasing power spectral densities for

vertical displacement projected from head rota-

tion as prediction interval is increased from 0 to

100 ms in steps of 33 ms.

Predictor Analyses

Based on extensive off-line numerical simula-

tions, three different predictor parameterizations

were ultimately selected for experimental study.

The default and twist parameterizations are both

based on the cost function of Eq. (23). The

hybrid parameterization is from Eq. (27). The

default parameterization uses Azuma and

Bishop's (1994) exact W, and W r values. W,
for the twist and hybrid parameterizations and

W,_ for the twist and the displacement portion

( J,,,p) of the hybrid parameterizations were
optimized for a prediction look-ahead of 50 ms

from a pre-recorded sample set (-20 s of data
recorded at 120 Hz) of the side-to-side human

head motion that would later be required of the
subjects in the experiment described below. The

noise portion, J ......, of the hybrid design, how-

ever, was based separately on a high pass filtered

(2nd order, breakpoints at 0.5 and 5 Hz) record

of a subject's head motion while sitting still and

looking straight ahead. The hybrid parameter-

ization sets /3 = Y and a = 0 for both its J,,,, and
J ........portions (i.e., emphasizing horizontal and
vertical image displacement errors) and a = b to

equally weight tracking accuracy and noise
reduction.

Table 1 lists a variety of metrics describing the

three parameterizations' performance at 50 ms
of prediction for the same 20 s sample

movement history used in the optimizations.

The tabulated values are each ratios. The

denominator of each ratio---the RMS difference

based on the particular metric between the unde-

layed displacement input to the sensor and its

uncompensated (delayed)
measurement---expresses the error introduced by

delay. For the noise metric, the sensor displace-

ment input is set to zero. The numerator is the

RMS difference for the particular metric between

the displacement input to the sensor and the out-

put of the predictive compensator--a measure of

the error introduced by imperfect prediction.

Thus, the smaller the tabulated quality, the better

a particular predictor's performance is with
regard to that specified metric. The twist RMS

error is defined by Eq. (23). The horizontal

RMS displacement error and noise arise from

Eqs. (25) and (26) respectively when a = }, =0;

the vertical components arise when a =/3 = 0.

Distance (or depth) errors (i.e., /3 = }, = 0), per-

pendicular to the plane of the HMD, were omit-
ted from the table because of their minimal

impact on the rendered VE in the discrimination

experiment.

From Table 1, the horizontal displacement errors

appear to be 10% to 15% of the vertical, imply-

ing that horizontal tracking is better for any of

the predictor parameterizations. A more likely

explanation for this imbalance is that the side-to-

side motion record used to parameterize the pre-
dictors and to calculate these scores contributes

mainly to the horizontal metric's denominator,
and therefore dominates it but not the vertical.

Conversely, the horizontal and vertical noise

scores only use the record of the subject sitting

still (rather than moving side-to-side) from which

essentially all voluntary activity was removed by

high pass pre-filtering, making their denomina-

tors nearly identical for J,_o,,,,. In comparing the
performance of the three predictor parameter-

izations, the vertical displacement error and

horizontal noise offer no specific insight. Verti-

cal noise suggests that the J,,v,, design is best,

while the horizontal displacement error shows

that the J,,,, and J,,,.,, parameterizations are
equally good. Interestingly, the twist error

metric indicates that J,,i,, is best, but that J,,,,, is

worse than even the default parameterization.

However, it is important to caution that the
obsern'ations in Table 1 are calculated from the

same specific (i.e., side-to-side or stationary)

7



motion records used to form the

parameterizations.

Figure 2 presents time domain tracking excerpts

for the three predictor parameterizations from

the optimization data sets. These plots show
horizontal and vertical displacements arising

from head rotations per Eq. (24). The horizon-
tal trace is dominated by 0.67 Hz side-to-side
volitional head motion. The same 0.67 Hz

rhythm is not obvious in the vertical plots. The

vertical plots appear more oscillatory in the 5 Hz

range, which, consistent with the performance

metrics' scores in Table l, may simply be due to

the absence of the larger scale horizontal motion.

Examination of the magnified plots shows that

none of the three predictors track the 5 Hz input

component particularly well--all three outputs

show 90 ° or more of phase lag. In fact, the

hybrid predictor output remains in phase with

the delayed measurement, evidently not exhib-

iting the other designs' overshoot simply

because these higher frequency components are

not being predicted.

Power spectral density plots in figure 3 summa-

rize the frequency domain attributes of the three

parameterized predictors averaged over the entire

20 s length of the side-to-side motion

optimization data set for the calculated

horizontal and vertical components. In general,

all predictors match the amplitude of the actual
input in the range of voluntary head motion up

to ~1.5 Hz. The horizontal component has

greater power density in this region again

because the motion is predominantly side-to-

side. The vertical component spectrum shows a

prominent bulge in the vicinity of 5 Hz--the

oscillatory activity associated with head and body
tremor--that is not discernible in the horizontal

plot. In the horizontal plots, beginning at

~1.5 Hz, the predictors' outputs initially all rise

together above the actual input, eventually

spreading to between 20 and 40 dB higher,

indicative of predictor action at higher frequen-
cies. This behavior is seen in the vertical

spectrum, but only for the default and twist

optimized predictors. The hybrid predictor

follows the input spectrum magnitude very

closely (up only -4 dB at the 5 Hz bump), con-

firming the lack of prediction at higher frequen-

cies noted in the vertical plots of figure 2. The

comparably heightened noise gain for the

default and twist predictors' spectra but not the

hybrid's (which had essentially unmagnified
vertical noise) concurs with the noise values

Metric

Component

Twist Error Displ Error i Dispi Error Noise Noise

-- Horizontal Vertical Horizontal Vertical

Input Data Raw Raw Raw High-Pass High-Pass

0.181 0.161 1.047 2.250 2.251

0.135 0.104 0.934 2.703 1.993

"/h,.b 0.457 0.108 1.041 2.449 1.043

Table 1. Performance metrics for default, twist, and hybrid optimized parameterization with 50 ms prediction.
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head rotation. (Right) Regions magnified from corresponding boxes in left plots also include twist

and hybrid predictor output.

reported in Table 1, and thereby supports use of

the hybrid design to prevent magnification of

high frequency vertical noise components.

It is important to note that while the time and fre-

quency domain plots and performance metrics

represent data for 50 ms of predictive compen-

sation, results are similar for the longer 67, 83,
and 100 ms latencies covered in the

discrimination experiments.
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Figure 3. Predictor power spectra at 50 ms look-
ahead. Vertical (left) and horizontal dis-

placement (right).

Experiment

VE System Hardware and Software

The experiment VE and KF predictor software

ran on an SGI Onyx workstation with four

R4400 CPUs and dual-pipeline RealityEngine-2

graphics. The subjects viewed the VE in a

Virtual Research V8 HMD. The position and

orientation of subjects" head as well as those of a

visually presented target object were measured

by separate Polhemus FasTrak instruments (i.e.,

control boxes), each with a single receiver and

single transmitter, and each interfaced to its own

Onyx ASO 115.2 KBaud serial port. A variety

of software techniques, including the streaming

of sensor input to its own stand-alone software

process that then transfers data to other simula-

tion processes on the SGI computer via shared

memory (Jacoby, Adelstein, & Ellis, 1996),

enable us to produce fast VEs with low latency,

high update rates, and reduced temporal
variability. The sensor-to-display "internal"

latency for the VE used in our experiment was

measured by the methods of Jacoby et al. (1996)
to be 35+5 ms (mean _+stdev) for Cartesian dis-

placement at a steady frame rate of 60 Hz.

Concurrently reported quaternion rotations

averaged 5 ms less (Adelstein, Johnston, & Ellis,
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1995). A number of additional software and

hardware procedures that further reduce transla-

tion and rotation latencies respectively to 30__.5
and 25-+5 ms or better were not invoked because

of potential degradation to frame rate uniform-

ity. This low internal VE system latency and

uniform frame rate make possible the controlled

addition of the time delays required for our

experimental study.

The VE for the experiments consisted solely of a

virtual faceted sphere (i.e., target) in a dark,

empty space, lit as described by Ellis, Young,

Adelstein, and Ehrlich (1999a). Subjects were
seated with the HMD's FasTrak receiver 0.4 m

below the FasTrak transmitter. The virtual

sphere, whose position in the VE was governed
by an immobile second FasTrak receiver, was

centered 0.8 m in front of the HMD. Ideally,

with perfect measurement in the absence of any

delay, the image of the sphere should move on

the HMD LCD panels in a manner such that it

appears to the observer to be fixed in space. In

the presence of the inevitable delays, the virtual

sphere will not be locked perfectly in space and

may appear to move about its ideal fixed
location.

Software embodying the estimation and predic-

tion procedures was implemented as a separate

process interposed between the sensor and VE

processes on the SGI workstation. The predictor

process receives raw data from the sensor process

in one shared memory location and deposits the

compensated results into another location. A

separate shared memory process serves to revise

predictive compensator parameters in real time.

The predictors are coded in C and, at present, use
Matlab's C/C++ Library for computing the

matrix exponential function of Eq. (3). Pre-

dictor parameterization sets are typically

developed beforehand in off-line optimizations

coded in the Matlab language.

The multi-processing, multi-processor architec-

ture of our VE system allowed the predictor to
run without degradation to the other processes

during our experiments. Predictor computation

cycles (rotational and translational combined)

rarely (<0.05%) exceeded the 8.3 ms window

required to maintain synchronization with the

120 Hz FasTrak sampling frequency.

Discrimination Experiment Protocol

The ultimate goal of our parameterization effort
is to produce predictors that remove VE system

while at the same time not introduce compensa-

tion artifacts. These experiments aim to study

user awareness of any artifacts due to the pres-

ence of imperfect predictive compensation. Our

experimental approach for determining the

effect on user perception of different compen-

sator parameterizations is derived from a

technique to assess subjective detectability of

changes in VE latency (Ellis, Young, Adelstein,
& Ehrlich, 1999a, 1999b).

The experimental procedure is based on the fol-

lowing two alternative forced choice protocol.

The seated subjects were required to yaw their
heads from side-to-side in time to a 80 beat/min

metronome (0.67 Hz or 1.5 s per full back-and-

forth cycle) while maintaining the virtual sphere

in view. Using any perceivable quality in the

appearance of the virtual sphere as they moved

their heads, subjects were asked to judge whether

sequentially presented VE conditions were the

same or different and entered their automatically

logged response through a hand-held push-

button device. The VE could be running either

Condition A, at the baseline 35 ms displacement

latency without prediction, or Condition B, with
artificial latency added to the baseline that was

then matched by the predictor's compensation
interval.

Each of six latency values (16.7 to 100 ms in

16.7 ms steps) was blocked into its own ran-

domly ordered set of 20 judgments such that
each of the four possible A-B condition pairings

was repeated five times. The order of blocks of
individual latencies was also randomized. Pre-

dictor type was blocked so that subjects com-

pleted all tests with one predictor before

proceeding to the next. The six possible pres-
entation orders for the three predictors (standard,

twist, and hybrid) were balanced between the 12

subjects. Each subject's proportion of correct

discriminations for a particular condition was

calculated from its set of 20 responses. The

subjects, who were either lab members or paid
naive recruits, all had normal or corrected to

normal vision and no other known impairments.
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Discrimination Results

Figure 4 shows the percentage of correct dis-

criminations between the compensated delay and

minimal delay conditions averaged across all

twelve subjects. A 50% correct response propor-

tion would be expected if subjects were guessing

randomly at the balanced presentation of stimu-

lus pairs. Discriminability of any of the predic-
tors grows monotonically with the number of

steps of added latency. The separations of the

curves and standard error bars for in figure 4,
calculated from the binomial distribution for the

proportional data, suggests that for compensated

latencies >33 ms the hybrid predictor's pres-

ence is less discriminable than the other designs.

A three-way (latency X predictor type X predic-

tor order) ANOVA was carried out on the pro-

portional responses following the arcsine square
root transformation to convert the data to a

normal distribution (Sachs, 1984, p. 339). The

main effects of added latency (F = 56.347; df=

5,30; p < .001) and predictor type (F = 11,239;

df= 2,12; p < .002) on the proportion of correct

responses were significant. Predictor order was

not significant. Neither were any of the interac-
tions between the main factors.

"11.R.r_:

90'_

80%

0 70_
(.)

60%

5O%

40%

hybrid

--'-twist _ ......

'_±1 ............SE (binomial) /randomguessi_ _ .,random guessing/

17 33 50 67 83 100

Added Latency (ms)

Figure 4 Percent correct discrimination averaged
across all 12 subjects (mean _.+std error) as a

function of predictor type and latency added to

the 35 ms VE system minimum.

Discussion

The experiment tested human performance in a

specific, stereotyped head motion meant to elicit

both the transient VE image drifts commonly

associated with system latency and the overshoots

of prediction. Head yaw motion was chosen

because it is a principal component of gaze

direction--the action of visually locating objects
in both real and virtual environments. Further-

more, because head rotation rather than transla-

tion by the body is generally expected to cause

larger shifts of the visual scene (Zikan et al.,

1995), VE images will be more sensitive to

response imperfections in the rotational

components of spatial motion.

In the experiment, artificial latency was deliber-

ately added and then compensated back toward

the VE system baseline delay. This avoided pre-

diction all the way down to zero absolute latency

for which we could not then produce a predic-
tion-free VE control condition. It also enabled

us in a separate study (Jung, Adelstein, & Ellis,

2000) to compare the subjective effects specifi-

cally of the artifacts introduced by prediction

against the degradation caused by uncompen-

sated, artificially added VE latencies.

The experiment results show the hybrid predictor

parameterization to have better performance

(lower discriminability) than the two other

designs tested, and that this improvement appears

to increase as the amount of additional compen-
sated latency rises. The twist and default pre-

dictors did not exhibit significant differences in

discriminability. While the twist and default pre-
dictors" parameterizations were based on the
same cost function, this result is still somewhat

surprising since the default parameter quantities

(Azuma & Bishop, 1994) were developed for

completely different VE system components and

input human motion. It is noteworthy that all the

predictor designs still remained above 50 percent

discriminability (including the standard error

ranges)--the level associated with random

guessing. If the subjects did no better than ran-

dom guessing this would have implied that any

artifacts introduced by prediction were, on

average, not perceptible to the subjects.

The better performance of the hybrid param-

eterization is attributable to its ability to predict

in the horizontal direction while not predict in
the vertical. Thus, while the slow (and therefore

less overshoot prone) side-to-side motion was
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acted upon, amplification (and consequent

increased visibility) of the higher frequency

noise components dominant in the vertical was

avoided. The behavior of this parameterization

was dictated by a cost function that weighted

equally the displacement magnitude of higher-

frequency noise (such as tremor) and errors

from tracking low-frequency volitional

inputs--all as projected into the plane of the
HMD. None of the cost criteria examined

explicitly weighted time lag. Also, the hybrid

cost function as weighted did not itself differen-

tiate between horizontal and vertical response:
the difference arose because of the directional

anisotropy of the motion history upon which the

optimization was carried out. As such, the

resulting predictor parameters may only be

suited for the specific type of motion from which

they were optimized.

A number of metrics based on the cost criteria

for the different optimization schemes were

examined as indicators of predictor perform-
ance. Two of the four metrics related to the

hybrid optimization indicated that the hybrid
predictor would have the lowest vertical noise

amplification and tie for best tracking accuracy.
The other two of the four metrics demonstrated

no preferred parameterization. The twist error

metric picked the twist design--more or less as

expected since this metric was the cost function

for optimizing twist. Interestingly, the same cri-

teflon also suggested that the hybrid design

would fare worse than the default parameteriza-

tion. It might be claimed that this is because the

simple twist cost function is unable to capture all
the nuances that the directional metrics can. At

issue, however, is whether these metrics are ulti-

mately suitable only for scoring optimizations
obtained with the same cost function as the

metric. This question warrants a more detailed

analysis of these performance metrics, using data

from many different motion records and from a

variety of subjects rather than the same single

data set used in the optimizations for this study.

Though the optimization cost criteria introduced

in the course of this work may have general util-

ity, the specific numerical parameterizations were

developed for the exact same subject movements

used in the experiment. Hence, the predictors

studied might not achieve the same performance

for other head or body segment motions--recall

that the hybrid parameterization did not predict

vertical components. One possible approach to

this limitation would be to develop banks of

appropriate predictors whose relative weightings

could be modulated depending on the type of

human operator activity.
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