
 
 
 
 

NASA/TM—20205011433 
 

    
 
 

Characterization of How CO2 Level May Impact 
Crew Performance Related to the HSIA Risk 
 
Bettina L. Beard 
NASA Ames Research Center 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

December 2020 



 
ii 

NASA STI Program…in Profile 
 
 

Since its founding, NASA has been dedicated  
to the advancement of aeronautics and space 
science. The NASA scientific and technical 
information (STI) program plays a key part in 
helping NASA maintain this important role. 
 
The NASA STI program operates under the 
auspices of the Agency Chief Information 
Officer. It collects, organizes, provides for 
archiving, and disseminates NASA’s STI. 
The NASA STI program provides access to 
the NTRS Registered and its public interface, 
the NASA Technical Reports Server, thus 
providing one of the largest collections of 
aeronautical and space science STI in the 
world. Results are published in both non-
NASA channels and by NASA in the NASA 
STI Report Series, which includes the 
following report types: 

• TECHNICAL PUBLICATION. Reports 
of completed research or a major 
significant phase of research that 
present the results of NASA programs 
and include extensive data or 
theoretical analysis. Includes 
compilations of significant scientific 
and technical data and information 
deemed to be of continuing reference 
value. NASA counterpart of peer-
reviewed formal professional papers but 
has less stringent limitations on 
manuscript length and extent of graphic 
presentations. 

• TECHNICAL MEMORANDUM. 
Scientific and technical findings that 
are preliminary or of specialized 
interest, e.g., quick release reports, 
working papers, and bibliographies that 
contain minimal annotation. Does not 
contain extensive analysis. 

 

• CONFERENCE PUBLICATION. 
Collected papers from scientific and 
technical conferences, symposia, 
seminars, or other meetings sponsored or 
co-sponsored by NASA. 

• CONTRACTOR REPORT. Scientific 
and technical findings by NASA-
sponsored contractors and grantees. 

• SPECIAL PUBLICATION. Scientific, 
technical, or historical information from 
NASA programs, projects, and missions, 
often concerned with subjects having 
substantial public interest. 

• TECHNICAL TRANSLATION. 
English-language translations of foreign 
scientific and technical material 
pertinent to NASA’s mission. 

 
Specialized services also include creating 
custom thesauri, building customized 
databases, and organizing and publishing 
research results. 
 
For more information about the NASA STI 
program, see the following: 

• Access the NASA STI program home 
page at http://www.sti.nasa.gov 

• E-mail your question via to 
help@sti.nasa.gov 

• Phone the NASA STI Help Desk at  
(757) 864-9658 

• Write to: 
NASA STI Information Desk 
Mail Stop 148 
NASA Langley Research Center 
Hampton, VA 23681-2199 

   



 
iii 

 
 
 

NASA/TM—20205011433 
 

 
 

Characterization of How CO2 Level May Impact 
Crew Performance Related to the HSIA Risk 
 
Bettina L. Beard 
NASA Ames Research Center 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
National Aeronautics and 
Space Administration 
 
Ames Research Center 
Moffett Field, California 
 

 

December 2020 
  



 
iv 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Available from: 
 

NASA STI Program 
STI Support Services 

Mail Stop 148 
NASA Langley Research Center 

Hampton, VA 23681-2199 
 

This report is also available in electronic form at http://www.sti.nasa.gov  
or http://ntrs.nasa.gov/ 

 



 
v 

Table of Contents 
 
 

List of Figures and Tables ................................................................................................ vi 
Acronyms and Definitions  .............................................................................................. vii 
1. Background .................................................................................................................. 2 

1.1. A Broad View of NASA’s Plans and Concerns ................................................ 2 
1.2. Relevant HFBP Efforts ...................................................................................... 3 

2. An Anomaly Response Framework ............................................................................. 4 
2.1. CO2 Impacts on Health and Performance ......................................................... 5 
2.2. How Elevated CO2 may Impact the HSIA Risk ............................................... 6 

2.2.1. Anomaly Detection and Recognition ...................................................... 6 
2.2.1.1. Technology Challenge #1 in Table 1 ........................................ 7 
2.2.1.2. Technology Challenge #2 in Table 1 ........................................ 10 
2.2.1.3. Technology Challenge #3 in Table 1 ........................................ 11 
2.2.1.4. Technology Challenge #4 in Table 1 ........................................ 13 

2.2.2. Anomaly Diagnosis, Troubleshooting and Interventions ....................... 13 
2.2.2.1. Technology Challenge #5 in Table 2 ........................................ 14 
2.2.2.2. Technology Challenge #6 in Table 2 ........................................ 17 

2.2.3. Anomaly Response Contingency Management and Recovery ............... 19 
2.2.3.1. Technology Challenge #7 in Table 3 ........................................ 20 
2.2.3.2. Technology Challenge #8 in Table 3 ........................................ 22 
2.2.3.3. Technology Challenge #9 in Table 3 ........................................ 23 

3. Discussion .................................................................................................................... 25 
3.1. A Threshold Limit Value (TLV) ....................................................................... 25 
3.2. Critique of the CO2 Research ........................................................................... 27 
3.3. Technological Support ...................................................................................... 28 
3.4 Research Gaps .................................................................................................... 28 
3.5. Potential Crew Performance Monitoring Measures .......................................... 29 

4. Conclusions .................................................................................................................. 30 
References ........................................................................................................................ 31 
Appendix A. Autonomous Task List ............................................................................... 40 
Appendix B. Historical Anomaly Identification during the Apollo Project .................... 42 
Appendix C. Lessons Learned from International Space Station Assembly Missions .... 44 
Appendix D. Additional Items that may Exacerbate the HSIA Risk ............................... 46 
 
 
  



 
vi 

List of Figures and Tables 
 
 

Figure 1. Critical and interrelated components in NASA’s plans ................................... 2 
Figure 2. Theoretical characterization of factors that affect the crew’s ability to  

self- reliantly respond to time-critical anomalies ............................................ 4 
Figure 3. Graphic containing the studies reporting a significant effect of elevated  

CO2 on cognitive or motor performance. ........................................................ 26 
 
Table 1. Anomaly Detection and Recognition ................................................................. 7 
Table 1.1. TC#1: Elevated CO2 Outcomes, Real-time Monitoring ................................. 9 
Table 1.2. TC#2: Elevated CO2 Outcomes, Link Agent State with Context ................... 10 
Table 1.3. TC#3: Elevated CO2 Outcomes, Anomaly or Fault Detection ....................... 12 
Table 2. Anomaly Diagnosis ............................................................................................ 14 
Table 2.1. TC#5: Elevated CO2 Outcomes, Provide Essential Information for 

Diagnosis........................................................................................................ 16 
Table 2.2. TC#6: Elevated CO2 Outcomes, Provide Failure Response 

Recommendations with Rationales ................................................................ 19 
Table 3. Anomaly Response Contingency Management and Recovery .......................... 20 
Table 3.1. TC#7: Elevated CO2 Outcomes, Adapt to the Dynamics of the Task ............ 21 
Table 3.2. TC#8: Elevated CO2 Outcomes, Recognizing and Handling Cascading 

Events ............................................................................................................. 23 
Table 3.3. TC#9: Elevated CO2 Outcomes, Update Databases to Reflect Anomaly 

Response Processes and Lessons Learned ..................................................... 24 
Table 4. Cognitive, Motor and Physiological Effects of Elevated CO2  and Potentially 

Useful Crew Diagnostic Monitoring Measures ................................................ 29 
 

  



 
vii 

Acronyms and Definitions 
 
 

AI ...........................................artificial intelligence 
AMO ......................................Autonomous Mission Operations 
ASO .......................................Autonomous Systems and Operations (NASA) 
C&W ......................................caution and warning 
CANTAB ...............................Cambridge Neuropsychological Test Automated 

Battery 
CM-d ......................................crewmember-days 
CM-h ......................................crewmember-hours 
CO2 .........................................carbon dioxide 
ConOps ..................................Concept of Operations 
CTA........................................cognitive task analysis 
EMU .......................................Extravehicular Mobility Unit 
EVA .......................................extravehicular activities 
ExMC .....................................Exploration Medical Capability 
FAA .......................................Federal Aviation Administration 
HCAAM .................................Human Capabilities Assessment for Autonomous 

Missions 
HFBP .....................................Human Factors and Behavioral Performance 
hr ............................................hour(s) 
HRP ........................................Human Research Program (NASA) 
HSI .........................................Human-System Integration 
HSIA ......................................Human-System Integration Architecture 
IFI ...........................................Items for Investigation 
IS ............................................intelligent systems 
ISS ..........................................International Space Station 
IT ............................................information technology 
MCC .......................................Mission Control Center 
MER .......................................Mission Evaluation Room 
min .........................................minute 
mmHG....................................millimeters of mercury 
MSS .......................................Mobile Servicing System 
NASA .....................................National Aviation and Space Administration 
PI ............................................Principal Investigator 
ppm ........................................parts per million 
PVT ........................................Psychomotor Vigilance Test 
RPD ........................................recognition primed decision 
SA ..........................................situation awareness 
SASO .....................................Safe Autonomous Systems Operations 
SMS .......................................Strategic Management System 
TC ..........................................Technology Challenges 
TIM ........................................technical interchange meeting 
TLV ........................................Threshold Limit Value 
TOCA .....................................total organic carbon analyzer 
VOLT .....................................Visual Object Learning Test 

 



 
1 

 
 
 

Characterization of How CO2 Level May Impact Crew 
Performance Related to the HSIA Risk 

 
Bettina L. Beard1 

 
 

Safety and mission critical anomalies are inevitable on NASA exploration missions. Delays and 
interruptions in communication with Earth-experts drives the requirement that crew resolve 
these anomalies on their own. The Human Factors and Behavioral Performance (HFBP) 
element of the NASA Human Research Program (HRP) recently stood-up the Human-System 
Integration Architecture (HSIA) risk. The specific risk statement is: 

“Given decreasing real-time ground support for execution of 
complex operations during future exploration missions, there is a 
possibility of adverse performance outcomes including that crew 
are unable to adequately respond to unanticipated critical 
malfunctions or detect safety critical procedural errors.” 
 

Reliable, on-board capabilities will need to support the crew - not only to resolve anomalies, but 
also to promote situation awareness (SA) and to reduce workload. Unfortunately, the present 
level of technological advancement limits the range of achievable intelligent support (Wu & 
Vera, 2019). The Human Capabilities Assessment for Autonomous Missions (HCAAM) projects 
were devised to identify how technology may benefit crew situation awareness and enhance crew 
trust in the intelligent systems. A suite of time-critical and complex exploration tasks have been 
identified (Holden et al., 2019) that may advance human-integration Concept of Operations 
(ConOps) development. This ConOps (a future HFBP directed task) along with standards and 
guidelines (Holden et al., 2019) may be used as the foundation for human-system requirements 
for a self-reliant crew. 
 
Spaceflight CO2 levels are elevated relative to terrestrial levels. Above 2.5 mmHg there is an 
increase in the incidence of crew headaches (Law et al., 2014) and Mission Control reports of 
mood and performance changes in the crew. The concern is that elevated CO2 effects may 
exacerbate the HSIA risk. Unfortunately, effects of higher concentrations of CO2 on performance 
decrements are not well established. 
 
The main goal of the current report is to identify how elevated CO2 impacts the HSIA risk. 
The approach taken is to trace the relationship between cognitive and motor abilities 
required for anomaly response with critical mission tasks and the level of technological 
advancement to support anomaly resolution to identify how elevated CO2 may impact the 
HSIA risk. The conclusion is that elevated CO2 could exacerbate the HSIA risk. Several 
research gaps are identified. 
 
  

 
1 NASA Ames Research Center; Moffett Field, California. 
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1. Background 
Anomaly: “an unexpected event, hardware or software damage, a departure from established 
procedures or performance, or a deviation of system, subsystem, or hardware or software 
performance outside certified or approved design and performance specification limits” (NASA-
HDBK-8739.18). 
 
1.1. A Broad View of NASA’s Plans and Concerns 
The ultimate goal of this report is to characterize how research-identified cognitive and motor 
changes resulting from elevated levels of carbon dioxide (CO2) could affect an exploration 
crew’s ability to independently respond to time-critical anomalies. The overarching context 
involves an interplay between three critical and interrelated components: NASA’s 
Artemis/Gateway plans, increased crew self-reliance and the risk that the crew will not be able to 
effectively respond to unexpected anomalies without Mission Control Center (MCC) and 
Mission Evaluation Room (MER) support. How these components relate to each other is shown 
in Figure 1. 

 
Figure 1. Critical and interrelated components in NASA’s plans. 

 
 
First, NASA plans to send humans to the Moon as a springboard to Mars missions. The Artemis 
lunar exploration program will construct a lunar orbit base camp from which men and women 
will take excursions to the Moon’s Lunar South Pole within the next decade. Further excursions 
will provide an opportunity to test new technology and better understand spaceflight effects on 
the human body to enable human-rated Mars missions. 
 
The second relevant component in NASA’s plan is a mandatory increase in crew self-reliance on 
these missions. Limited communication windows, communication latencies, communication 
disruptions, limited bandwidth and potential communication failures will constrain access and 
availability of ground personnel oversight requiring that crew independently identify, interpret 
and resolve unexpected events. 
 
All spacecraft require a level of autonomy. To date, spacecraft, rovers, satellites and probes 
execute scripts triggered by events. This restricted form of autonomy is adequate when activity 
sequences can be determined well in advance, however it breaks down under increased 
uncertainty. Future manned missions to cis-lunar space, the surface of the moon and possibly 
further into our solar system, will require unprecedented autonomous operations. 
 
The third component pertains to a critical risk identified by the Human Factors and Behavioral 
Performance (HFBP) element of the NASA Human Research Program (HRP). The complexity 
of NASA’s plans for the development of a lunar base, extravehicular activities (EVA), the 
complement of experiments to be performed and multi-year missions to Mars increases the 
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probability of a wide variety of anomalies. It is unclear if the crew will have the ability to 
effectively respond without real-time ground support to these unanticipated, acute malfunctions 
or to detect critical procedure errors. This threat to mission safety and success is referred to as 
the Human-System Integration Architecture (HSIA) risk. The crew will need their own resources 
(skills, training) and specialized, on-board support systems to meet the new mission challenges. 
 
1.2. Relevant HFBP Efforts 
Since the approval of the HSIA risk into the HRP risk posture, the HFBP Element has analyzed 
Items for Investigation (IFI) entries, held a technical interchange meeting (TIM), solicited and 
funded seven research projects and convened a focus group. The purpose of these four efforts 
are to understand the: 

• frequency and time criticality of high priority events. Vera et al. (2019) found 
that events that could have resulted in loss of crew or loss of mission occurred, 
on average, once every two months during the first two years of ISS operations. 
It was estimated that one-third of these were time-critical. 

• current state of the art in intelligent systems (IS). Wu & Vera (2019) summarize 
the presentations (29 speakers) and discussions from a TIM held in August of 
2018. The result was a set of Technology Challenges (TC). An effort being 
undertaken by the NASA Aviation Safety Program under the Safe Autonomous 
Systems Operations (SASO) Project (a.k.a. element) is of relevance here. Their 
goal is to: 

“Develop autonomy that transparently teams with and even supervises 
human partners to allow a safe, affordable, scalable system. For highly 
complex systems, maintain human judgment, but allow for scalability 
through human automation teaming. Develop mixed initiative autonomy 
incorporating adjustable and adaptive automation that transparently teams 
with a human partner to allow safe, affordable, scalable monitoring and 
supervision of one to very many vehicles…” 

These two NASA efforts could/should leverage one another to: 
• define standards and requirements toward integrated, intelligent systems 

including advanced autonomous decision-support. HFBP funded seven HCAAM  
grants, summaries are available at https://humanresearchroadmap.nasa.gov/tasks/ 
task.aspx?i=2244. This effort is ongoing and will be referred to here as the 
HCAAM Projects. 

• identify candidate at-risk tasks for a self-reliant crew. Holden et al. (2019) 
summarize the discussions of a focus group of spaceflight subject matter experts 
(e.g., crew, mission control, crew training). Of particular concern to this group 
was the early detection of, and response to, crew health issues, poor teamwork 
and system faults. The crew’s ability to process information during time-critical 
anomalies was considered a potential risk as was the absence of relevant data 
and data analytics about the complex system for crew decision-making. Other 
concerns revolved around crew training for anomalies and crew forgetting 
critical aspects of their pre-mission training. The focus group’s list of risky tasks 
will be referred to as the Autonomous Task List. The list from the report is 
provided in Appendix A. 
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2. An Anomaly Response Framework 
The framework presented in Figure 2 depicts how spaceflight and task-related stressors, training, 
team behavior, goals and metacognitive processes can influence crew anomaly response. The 
upper portion of Figure 2 represents intelligent systems composed of an operational Human-
System Integration (HSI) Data System and Potential Crew Aiding Systems. 
 

 
Figure 2. Theoretical characterization of factors that affect the crew’s ability to self-

reliantly respond to time-critical anomalies. 
 
 
The envisioned HSI Data System would include: 1) continuous agent (hardware, software and 
liveware [crew]) monitoring for deviations from system-nominal; 2) a terrestrially-managed data 
warehouse of spaceflight and terrestrial normative and anomalous evidence; and 3) data 
analytics, synthesis and interpretation for known anomalies, anomaly occurrence probabilities, 
anomaly resolution options, resources required for the resolution, resource volume and power 
consumption, whether those resources are available on-board, where they are located, relevant 
procedures for anomaly resolution and other supporting data. This data system would incorporate 
stochastic elements, variable uncertainties and event dependencies. All data would be located on 
a single, secure platform. The Exploration Medical Capability (ExMC) is developing a 
medically-focused data architecture (Krihak, 2016). Many of their assumptions and progress 
could be applied to an HSI Data System. Ideally, a comprehensive data system integrating all 
HRP elements is envisioned. 
 
Potential Aiding Systems (Figure 2, upper right) would support crew (and ground) situation 
awareness about key information. Crew information needs would be based on the Autonomous 
Task List (Holden et al., 2019) and a yet to be performed HFBP cognitive task analysis (CTA) 
that is based upon the tasks and abilities (Stuster et al., 2019) and generalizable skills and 
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knowledge (Stuster et al., 2018) for exploration missions identified previously. An ExMC-
funded cognitive task analysis (Daiker et al., 2020) for medical tasks could be folded into this 
overall HFBP CTA. 
 
Spaceflight scenarios are often characterized by rapidly evolving and changing conditions, 
severe time compression, and high degrees of ambiguity and uncertainty. A self-reliant crew will 
be presented with an overwhelming amount of data that may require the coordinated 
performance of the team who must gather, process, integrate, communicate, and act on these data 
in support of a decision. The lower section of Figure 2 lists a variety of other stressors (both 
physical and psychological) that exist in the operational setting, not the least of which is the 
catastrophic costs of making an error. These spaceflight and task-related stressors are dependent 
upon the crew’s training and the retention of the training material. Through overtraining 
emergency events, NASA helps to make the crew more resilient to stress effects. Certain task 
components become automatized, requiring fewer cognitive resources (Kirlik et al., 1998). 
Spaceflight and task-related stressors also interact with cognitive and metacognitive processes to 
influence critical team behavior during time-critical anomaly resolution. Noticing when 
something is amiss, assessing the anomaly and guiding a solution into place is referred to as a 
metacognitive loop (Anderson & Perlis, 2005). Metacognitive skills can help with time 
assessment, can reduce errors and help avoid decision biases (Cohen et al, 1996). This is all 
coupled with the fact that the spaceflight crew may be multinational. 
 
Anomaly response processes (highlighted in yellow) are positioned in the center of Figure 2. 
Classic assumptions of how people recognize, diagnose and respond to anomalies were that 
people map problem symptoms to diagnostic categories. However, field research has shown a 
much more complex and dynamic interplay between team members requiring coordination, 
resilience and affordance. Human and machine anomaly response may be broken down into three 
categories (Woods & Hollnagel, 2006, Chapter 8): 

• detect and recognize that an anomaly has occurred 
• troubleshoot/diagnose the anomaly 
• response contingency management and recovery from the anomaly 
 

Anomaly detection refers to the recognition of data patterns that differ significantly from the 
majority of the data (Zimek & Filzmoser, 2019). Troubleshooting is a form of problem solving 
that is logical and involves a systematic search for the source of the problem. Initial anomaly 
diagnosis or classification depends on expertise. Contingency management consists of an 
analysis of possible damage or after-effects that may occur as a consequence of the anomaly and 
the response to the anomaly. Anomaly recovery strategies are used to restore the fault to an 
acceptable state. These categories are not distinct, sequential stages, but rather interwoven 
processes that require revised situation assessments. Further information about these categories 
will be provided in Sections 2.1.1 through 2.1.3. 
 
2.1. CO2 Impacts on Health and Performance 
During International Space Station (ISS) assembly, a tradeoff was made between limits for 
ambient CO2 and the increased power and supply required to maintain low levels of CO2. As a 
result, spaceflight crew are exposed to CO2 concentrations higher than Earth normal.2 It is 

 
2 The current outdoor Earth concentration of CO2 is approximately 415 parts per million (ppm; 
co2.earth/daily-co2). 
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anticipated that lunar and Mars transit vehicles and habitats will have the same power and supply 
constraints, and therefore that crews will be exposed to elevated CO2. 
 
CO2 concentrations on the ISS hover around 2500 parts per million (ppm; Simon et al., 2018), 
but can depend on such things as where the sensor is located, how many crewmembers are 
located in the node or module, crew activity level and experiment off-gassing. In microgravity, 
localized CO2 pockets can form around a crewmember’s nose and mouth in poorly ventilated 
areas. Carr (2006) found a positive correlation between reported symptoms, such as headache, 
and CO2 level on the ISS. ISS crew report headaches, may miss procedure steps or have more 
difficulty finishing tasks on schedule when concentrations reach 3950 ppm (Law & Alexander, 
2016). Law et al. (2014) reported that CO2 level, crew age and time in-flight were significantly 
related to headache probability. How chronic exposure to elevated CO2 will affect crew anomaly 
resolution is unknown. 
 
Section 2.2 will address the purpose of this report: how elevated CO2 may impact the HSIA risk. 
The discussion is organized around the three anomaly response processes outlined above: 

1. Anomaly detection and recognition (Section 2.2.1 and Table 1) 
2. Troubleshooting and diagnosis (Section 2.2.2 and Table 2) 
3. Response contingency management and resolution (Section 2.2.3 and Table 3) 

 
Each anomaly process will be briefly described followed by a table showing the relationship 
between: 

• Key Technology Challenges (Wu & Vera, 2019) 
• ongoing HCAAM projects 
• the Autonomous Task List (Holden et al., 2019) 
• evidence for a CO2-related decline in performance 

 
The evidence for a CO2-related decline in performance will be expanded for each technology 
challenge. 
 
To err on the side of crew and mission safety, the discussion assumes a cautious approach. Only 
those scientific publications that have reported statistically-significant evidence for a CO2-related 
decline in performance will be considered. 
 
2.2. How Elevated CO2 may Impact the HSIA Risk 
2.2.1. Anomaly Detection and Recognition 
The first step in anomaly resolution is to recognize that a problem exists. Spaceflight safety-
critical anomalies must be quickly identified so that prompt corrective action can be taken. 
Currently, mission and program success can be attributed to large teams of engineers who 
understand the details of hardware design, test history, and operational characteristics of their 
respective systems. It is typically the ground personnel’s expertise that can be credited for 
successful anomaly detection. See Appendix B for a brief discussion about anomaly detection 
and recognition during the Apollo Project. 
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Table 1 presents four technology challenges identified by Wu & Vera (2019) that relate to 
anomaly detection and recognition. Each will be discussed separately in the following four sub-
sections (2.2.1.1 through 2.2.1.4). 
 

Table 1. Anomaly Detection and Recognition 

Key Technology Challenge HCAAM Project Autonomous Task List Significant CO2 Effects 

1 Real-time monitoring 
of vehicle, 
environment, team, 
resources and crew 

Crew Task 
Performance 
Quantification 
(PI: Fanchiang) 

Monitor … vehicle system 
performance (6a); 
Monitor system displays 
(8c); 
Trend monitoring (Cc) 

Allen et al. (2016) 
Basner et al. (2017) 
Kajtár & Herczeg (2012) 
Manzey et al. (1998) 
Myhrvold et al. (1996) 
Satish et al. (2012) 
Scully et al. (2019) 
Sun et al. (1996) 
Yang et al. (1997 

2 Link agent state with 
external sources or 
context (sensor/data 
fusion) 

 Integrate information (Cb) Allen et al. (2016) 
Myhrvold et al. (1996) 
Satish et al. (2012) 
Savulich et al. (2019) 
Scully et al. (2019) 

3 Anomaly or fault 
detection  

 Detect anomalies (Cd) Allen et al. (2016) 
Basner et al. (2017) 
Gill et al. (2014) 
Kajtár & Herczeg (2012) 
Maula et al. (2017) 
Myhrvold et al. (1996) 
Satish et al. (2012) 
Savulich et al. (2019) 
Sayers et al. (1987) 
Scully et al. (2019) 
Zhang et al. (2017a) 
Zhang et al. (2017b) 

4 
 

Quantify and provide 
system reliability to 
build user trust 

Conversation 
Trust Analysis 
(Lee) 

 There is no research on CO2 
effects on trust-in or 
reliance-on automation 

 
 
2.2.1.1. Technology Challenge #1 in Table 1 
The first Technology Challenge (TC#1) pertains to real-time monitoring and awareness of agent 
state. Continuous, real-time data monitoring is critical to maintain awareness of the state of the 
hardware, software and liveware [crew], and to detect an anomaly. Although Wu & Vera (2019) 
discuss a case where real-time monitoring by technology was successfully used (i.e., 
Autonomous Mission Operations [AMO]), this remains a technology challenge for most vehicle, 
environment, team, resource and crew data to effectively result in anomaly detection and 
recognition. This is because the physical world is inherently variable and it is difficult to know 
which changes are relevant. Experts are sensitive to event patterns. Interpretation depends upon 
what has preceded and what is expected to happen next. To recognize an anomaly, experts tune 
their attention to the future or to what is coming next (Christoffersen & Woods, 2003). 
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Monitoring displays is impractical for a busy crew for several reasons. First, it is very difficult 
to maintain attention in intellectually unchallenging, monotonous situations (see Robertson & 
O’Connell, 2010 for a review of “vigilant attention”). Further, multi-tasking, where only one 
task is system monitoring, is mentally fatiguing (Stark et al., 2000). Loss of vigilance at the 
onset of, or during, a time-critical event could compromise crew effectiveness (Molloy & 
Parasuraman, 1996). 
 
This technological challenge includes vehicle, environment and team monitoring. Fanchiang’s 
HCAAM project partially addresses this challenge by tracking crew task performance 
psychophysically (speed and accuracy) and biometrically (sensors). For this technology to be of 
value, the output must provide event patterns that will compel recognition of an underlying anomaly. 
 
Within the Holden et al. (2019) Autonomous Task List (Table 1, fourth column), there are three 
tasks that best apply to TC#1. The tags listed inside of the parentheses (6a, 8c, and Cc) refer to 
the labels assigned by Holden et al. Purple font indicates a time critical task rating by the focus 
group (although the monitoring of vehicle system performance and trend monitoring are 
arguably also time-critical). 
 
The fifth column of Table 1 lists publications reporting significant CO2 exposure effects on tasks 
pertinent to a crew that is required to continuously monitor for anomaly detection (TC#1). Table 
1.1 expands upon this research, summarizing details about the studies. The references are shown 
in the first column, the specific perceptual, cognitive or motor task is provided in the second 
column, the CO2 level(s) in parts per million (ppm) at which significant performance changes 
were reported (compared to baseline) is given in the third column, the fourth column shows the 
duration of exposure (note that this is not necessarily the time before measures were taken) and 
the rightmost column provides the number of subjects tested. 
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Table 1.1. TC#1: Elevated CO2 Outcomes, Real-time Monitoring 

Publication Task CO2 Concentration (ppm) 
Compared to Baseline 

Exposure 
Duration N 

 Rapid Response    
Myhrvold et al. (1996) Simple reaction time 1000 to 1499, 1500 to 4000 6 hr 548 
Myhrvold et al. (1996) Choice reaction time 1499, 4000 6 hr 548 
 Sustained Attention & 

Information Seeking 
   

Allen et al. (2016) Focused activity 1400 8 hr 24 
Basner et al. (2017) PVT accuracy 5050 26.5 hr 6 
Kajtár & Herczeg 
(2012) 

Errors found while 
proofreading 

3000, 4000 4 hr 10 

Manzey et al. (1998) Subjective alertness 12500 26 days 4 
Manzey et al. (1998) Unstable tracking 12500 26 days 4 
Satish et al. (2012) Focused activity 2500 2.5 hr 22 
Scully et al. (2019) Focused activity 1200 3 hr 22 
 Perception    
Basner et al. (2017) Line Orientation 

Discrimination speed 
5050 26.5 hr 6 

Sun et al. (1996) Stereoacuity 25000 30 min 3 
Yang et al. (1997) Coherent motion 25000 30 min 3 

 
 
Table 1.1 separates the references into rapid response, sustained attention/information seeking 
and perception capabilities. Myhrvold et al. (1996) found elevated CO2 exposure within a range 
of values slowed performance on simple and choice reaction time tasks. These data were 
collected in a large group of school children in the classroom (age range: 15 to 20 years). 
 
The ability to control attention and to seek alternative candidate explanations has been shown to 
be affected by elevated CO2. Using the Strategic Management System (SMS), a scenario-based 
assessment of problem-solving, Allen et al. (2016) found that subjects performed fewer focused 
activities when exposed to 1400 ppm as compared to baseline (550 ppm). Scully et al. (2019) and 
Satish et al. (2012) also reported a decline in focused abilities at 1200 and 2500 ppm, 
respectively. The Psychomotor Vigilance Test (PVT) measures how quickly a subject can 
respond to the onset of a millisecond counter. Accuracy on the PVT is a function of responding 
before the stimulus onset (false start) and missing the stimulus completely (miss). Basner et al. 
(2017) found that PVT accuracy was affected by elevated CO2 concentrations in subjects 
exposed to 5050 ppm while in a -12 deg head down position for approximately a day. Kajtár & 
Herczeg (2012) reported that exposure to 3000 and 4000 ppm reduced the number of 
proofreading errors identified compared to ambient air exposure and Manzey et al. (1998) found 
that subjective alertness ratings were lower and visuo-motor performance declined during 26 
days of exposure to 12500 ppm when compared to pre- and post-exposure control data. 
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Visual perception, which is a requirement for monitoring displays, is also affected by elevated 
CO2. Basner et al. (2017) reported that head-down tilt subjects were slower to adjust a line to be 
parallel to another line when exposed to CO2 concentrations of 5050 ppm. Other visual 
perception tests including stereoacuity (Sun et al., 1996), visual motion perception (Yang et al., 
1997), critical flicker fusion (Alpern & Hendley, 1952), visual acuity, depth perception, visual 
fields, color sensitivity, night vision and accommodation amplitude (Weitzman et al., 1969) have 
all shown significant declines at high CO2 concentrations. 
 
2.2.1.2. Technology Challenge #2 in Table 1 
The second Technology Challenge (TC#2; see Table 1) in the anomaly detection and recognition 
category relates to associating crew state with external sources. An intelligent system could, for 
example, correlate Fanchiang’s HCAAM crew state data with vehicle, environment and resource 
data. For technology, this is a sensor and data fusion issue. The data from different devices will 
either require standardization or, as is the ExMC data architecture strategy, data from various 
types of data structures can be translated by the system (Krihak, 2016). 
 
Related to TC#2, Holden et al.’s (2019) Autonomous Task List (Table 1, fourth column) 
identifies information integration as a critical task for an autonomous crew. 
 
The fifth column of Table 1 lists publications reporting significant CO2 exposure effects on 
tasks pertinent to associating crew state with external sources (TC#2). Table 1.2 expands upon 
this research, summarizing details about the studies. Again, the references are shown in the 
first column, the specific perceptual, cognitive or motor task is provided in the second column, 
the CO2 level(s) in parts per million (ppm) at which a significant change was reported 
(compared to baseline) is given in the third column, the fourth column shows the duration of 
exposure and the rightmost column provides the number of subjects tested. Seven tasks are 
separated into two categories. To relate crew state with external sources requires selective 
attention and ignoring distractions. 
 

Table 1.2. TC#2: Elevated CO2 Outcomes, Link Agent State with Context 

Publication Task 

CO2 Concentration 
(ppm) Decreased 

Performance Compared 
to Baseline 

Exposure 
Duration N 

 Selective Attention    
Allen et al. (2016) Task orientation 945 8 hr 24 
Satish et al. (2012) Task orientation 1000, 2500 2.5 hr 22 
Scully et al. (2019) Task orientation 1200, 

2500 (improvement) 
3 hr 22 

Satish et al. (2012) Applied activity 1000, 2500 2.5 hr 22 
Scully et al. (2019) Applied activity 1200, 2500 3 hr 22 
 Inhibit Distractions    
Myhrvold et al. (1996) Color word matching 1000 to 1499, 1500 to 

4000 
6 hr 548 

Savulich et al. (2019) Go/No Go omission errors 75000 20 min 27 
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Most cognitive tests involve problems that are decontextualized and well-structured. On the 
other hand, problems to be faced by crew will be remarkably complex, requiring inventive ways 
for restructuring the data using what has been called “sense making” (Lave, 1988). Even the 
Strategic Management System (SMS), used in studies of CO2 effects on cognition, provides 
well-structured information with a correct and convergent answer or solution so that study 
participants may be scored. Using the SMS scenario-based assessment, Allen et al. (2016), Satish 
et al. (2012) and Scully et al. (2019) found a decline in task orientation, or the ability to “make 
specific decisions that affect completion of current tasks” with elevated CO2. Satish et al. (2012) 
and Scully et al. (2019) reported that making decisions that are relevant to overall goal 
achievement (i.e., applied activity) was also significantly affected at CO2 concentrations ranging 
from 1000 to 2500 ppm. 
 
The ability to conditionally respond to a stimulus is also affected by elevated CO2. Myhrvold et 
al. (1996) presented students with color words. The task was to only respond if the color of the 
word was consistent with the color-word. Savulich et al. (2019) reported that subjects made 
significantly more errors of omission (to fail to respond to a target before the time-out period has 
elapsed) and responded slower when exposed to 75000 ppm CO2 for twenty minutes. 
 
2.2.1.3. Technology Challenge #3 in Table 1 
TC#3 relates to comparing current data with nominal configurations in order to identify risk 
hotspots, faults or anomalies. To detect an anomaly, for either humans or machines, requires 
finding patterns in gathered data that do not conform to expected behavior (i.e., outliers). This 
includes removing noisy-data and detecting novel and emergent patterns in the data. This is 
challenging (for both humans and machines) for four reasons: defining a normal region which 
encompasses every possible normal behavior is difficult, the boundary between normal and 
anomalous behavior is typically not precise, normal behavior may evolve and detection critically 
depends on the unique assumptions made. Recent work on anomaly detection for streaming data 
include the domain of monitoring sensor networks (Subramaniam et al., 2006), abnormal event 
detection (Davy et al., 2005) and anomaly detection in evolving data streams (Tan et al., 2011). 
 
Holden et al.’s (2019) Autonomous Task List (Table 1, fourth column) identifies anomaly 
detection as a critical task for an autonomous crew. 
 
The fifth column of Table 1 lists publications reporting significant CO2 exposure effects on tasks 
pertinent to outlier identification (TC#3). Table 1.3 expands upon this research, summarizing 
details about the studies. Fourteen instances of significant CO2 effects are separated into three 
categories. To relate crew state with external sources requires recognizing patterns, anomaly 
identification and working memory maintenance and manipulation. 
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Table 1.3. TC#3: Elevated CO2 Outcomes, Anomaly or Fault Detection 

Publication Task 
CO2 Concentration (ppm) 
Decreased Performance 
Compared to Baseline 

Exposure 
Duration N 

No study identified Mental Model 
Development 

   

No study identified Projecting into the Future    
 Pattern Recognition    
Allen et al. (2016) Information seeking 945, 1400 8 hr 24 
Savulich et al. (2019) Information search 75000 20 min 27 
Scully et al. (2019) Information seeking 1200 3 hr 22 
Basner et al. (2017) Visual obj learning acc 5050 26.5 hr 6 
Scully et al. (2019) Visual obj learning acc 2500 3 hr 22 
 Anomaly Identification    
Kajtár & Herczeg 
(2012) 

Errors found while 
proofreading 

3000, 4000 4 hr 10 

 WM Maintenance & 
Manipulation 

   

Gill et al. (2014) Auditory n-back (1, 2 or 3-
back difficulty 
adjustments) 

75000, 85000 4 min 12 

Maula et al. (2017) WM maintenance & 
retrieval 

2260 4 hr 36 

Savulich et al. (2019) Spatial WM 75000 20 min 27 
Sayers et al. (1987) 
Exp 1 

Subtraction speed 65000, 75000 5 min 10 

Sayers et al. (1987) 
Exp 2 

Subtraction speed 65000 10 min 21 

Zhang et al. (2017a) Addition 3000 4.25 hr 25 
Zhang et al. (2017b) Addition 5000 2.5 hr 25 

 
 
To relate current data with nominal configurations, identifying data regularities, and 
irregularities (i.e., pattern recognition) is key. Theories of naturalistic decision-making and the 
recognition primed decision (RPD) model, in particular, highlight the importance of previous 
experience with particular situations, to enable the development of patterns or mental models. 
Mental models draw attention to relevant cues, guide interpretation of the cues, determine 
plausible goals, suggest typical responses to the situation and project the status into the future 
(Endsley, 1995). Current technology fails to provide information in a way that fosters mental 
model development. Although no studies have specifically addressed CO2 effects on mental 
model development or on the ability to project into the future, the competence to seek 
information (Allen et al., 2016; Savulich et al., 2019; Scully et al., 2019) and to recognize 
learned objects (Scully et al., 2019) are both affected by elevated CO2. Although not a life-
threatening anomaly, the only CO2 research to specifically tap into anomaly identification are the 
studies by Kajtar & Herczeg (2012) who measured errors identified while proofreading. 
 
To identify outliers requires executive functions including working memory maintenance and 
manipulation. Gill et al. (2014) found a decline in n-back test scores (% correct) relating to the 
working memory requirements that would be required for anomaly detection. Maula et al. (2017) 
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tested 36, young students in an office setting on seven tasks. The only task affected by 2260 ppm 
during the 4 hour period was a recall task, with interference. Subjects first had to solve a 
mathematical problem and then memorize a presented word. The Savulich et al. (2019) spatial 
working memory task requires subjects to strategically find a target amongst an ever increasing 
number of options. They found that elevated CO2 resulted in more errors, particularly for the 
more difficult conditions. Sayers et al. (1987) ran two experiments. In the first, they found that 
the speed with which subject’s performed subtraction problems slowed at both 65000 and 75000 
ppm with reported discomfort at the 75000 ppm level. In the second experiment, subjects were 
exposed to 65000 ppm. After 10 min the time taken to perform subtraction problems rose to a 
peak. Finally, Zhang et al. (2017a,b) found that errors increased and speed decreased when 
subjects were asked to add five two-digit numbers printed in the same vertical column when 
exposed to 3000 or 5000 ppm CO2. 
 
2.2.1.4. Technology Challenge #4 in Table 1 
TC#4 relates to building user trust in technology. A meta-analytical review identified three 
factors that influence trust towards automation; team collaboration and tasking, operator abilities 
and personality and the automation attributes and performance, with the latter having the greatest 
influence (Hancock et al., 2011). The level of trust influences the operator’s reliance on 
automation. Trust and reliance are influenced by system reliability (Moray et al., 2000; 
Wiegmann et al., 2001; Bailey & Scerbo, 2007; Ma & Kaber, 2007) although this is not a simple 
linear relationship (Wiegmann et al., 2001). Improvement in trust calibration might be 
implemented with a flexible form of automation (e.g., adaptable or adaptive, see Discussion). 
 
Lee’s HCAAM project partially addresses this challenge through the development of real-time 
conversation indicators of trust. Hergeth et al. (2016) demonstrated that higher trust and reliance 
in automation was associated with monitoring the automation less frequently (measured through 
gaze behavior). 
 
2.2.2. Anomaly Diagnosis, Troubleshooting and Interventions 
The second major process in anomaly response is to identify and isolate the fault. Many 
laboratory and real-world studies have investigated how individuals respond to time-critical 
emergencies (see Woods & Hollnagel, 2006; Watts-Perotti & Woods, 2007 for reviews). In 
realistic conditions, judgements, problem solving and decisions are complex, time-constrained 
and must be made before all the critical information that might be wanted is available. How a 
person interprets the information is strongly linked to the context and individual factors, such as 
expertise. 
 
Development of information technology (IT) for crisis management has received increased 
attention in recent years. As an example, the RESCUE project has brought together computer 
scientists, engineers and social scientists to develop IT that quickly gathers, analyzes, 
disseminates and presents data in disaster situations (Mehrotra et al., 2003). 
 
Table 2 presents two technology challenges identified by Wu & Vera (2019) that relate to 
anomaly diagnosis, troubleshooting and intervention. Each will be discussed separately in the 
following sub-sections (2.2.2.1 through 2.2.2.2) 
 
  



 
14 

Table 2. Anomaly Diagnosis 

 Key Technological 
Challenges HCAAM Projects Autonomous Task List Significant CO2 Effects 

5 
 

Provide essential 
information for 
diagnosis. 
Integrate data into 
information. 
Display only relevant 
information. 
Answer queries. 
Gather critical data. 
Problem-solve. 
Generate new data. 
Determine time 
criticality. 
 

Virt Asst for LDEM 
Spcraft Anomaly 
(Selva). 
Resp Multimodal for 
SA (Stirling). 
Enhancing SA of 
Auto Proc 
(Schreckenghost). 

Use medical software 
for diagnosis (1b); 
Troubleshoot for 
unknown issues (4c). 
Review documentation 
(6c). 
Diagnose software 
problem (6c). 
Integrate information 
from existing sources 
(Cb). 
Trend monitoring (Cc). 
Data analysis (Cd). 
Validate solutions (Cg). 
Use lessons learned 
(Ce);. 

Allen et al. (2016) 
Allen et al. (2019) 
Gill et al. (2014) 
Lui et al. (2017) 
Maula et al. (2017) 
Satish et al. (2012) 
Snow et al. (2019) 
Zhang et al. (2017) 
Zhang et al. (2017) 
 

6 Provide failure response 
recommendations with 
rationales. 
Decision support. 
Interactive procedures. 
Provide alternatives. 
Intelligent tutoring. 
Self-scheduling. 
Just-in-time training. 

Virt Asst for LDEM 
Spcraft Anomaly 
(Selva). 
Resp Multimodal for 
SA (Stirling). 
Enhancing SA of 
Auto Proc 
(Schreckenghost). 

Determine candidate 
paths (Cf). 

Allen et al. (2016) 
Allen et al. (2019) 
Freiberger et al. (2016) 
Gill et al. (2014) 
Lui et al. (2017) 
Maula et al. (2017) 
Satish et al. (2012) 
Sayers et al. (1987) 
Scully et al. (2019) 
Snow et al. (2019) 
Vercruyssen (2014) 
Zhang et al. (2017) 

 
 
2.2.2.1. Technology Challenge #5 in Table 2 
The fifth Technology Challenge relates to the use of existing and new data and information to 
diagnose the potential sources of the anomaly, to isolate the anomaly and to determine the time 
criticality of the problem. The problem could be with a crewmember (e.g., medical) or a 
machine. Fault diagnosis, or the isolation of faults on defective systems, is a task requiring a high 
skill set. When a system fails, warning messages are often the only evidence available for 
assessing and diagnosing the underlying cause. The problem increases when there are multiple 
simultaneous faults. 
 
Automated diagnostic tools using artificial intelligence (AI) techniques are an active area of 
research. To assist the crew, the system should gather, integrate and make accessible, existing 
data from various sources (e.g., observed symptoms, current context, domain knowledge). 
Appendix C provides an example from ISS operations where critical information had not been 
input into the on-board system. Without MCC assistance, the crew would have misinterpreted 
the situation. 
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In addition to gathering existing data, the system should proactively generate data (e.g., acquire 
vital measurements, run diagnostics). Data mining is also an active research area where patterns 
or anomalies in the data are discovered, analyzed and then depicted to the user. 
 
Anomalies vary with respect to their urgency and therefore the degree to which the team must 
immediately respond to mitigate negative consequences. To know the time criticality of a 
problem, one must determine how fast the problem is progressing. When faced with an urgent 
event, team resources must shift away from ongoing routines and toward the event, potentially to 
“safe” the situation. Today’s workstations do not provide adequate support for the manipulation 
of time-critical information. 
 
TC#5 also refers to a system that provides essential information for anomaly troubleshooting. 
Imagine that the system has detected an unexpected pattern of data and notifies the crew with a 
caution, warning or alert. Assuming that the technology possesses the needed information, a 
major concern is averting an avalanche of data presented to the crew (i.e., danger of drowning in 
data but starving for knowledge; Simon, 1996). Therefore, another requirement would be for the 
system to fuse the data into actionable knowledge that is relevant for both immediate guidance 
and prolonged time horizons. Possibilities include a graph of graphs, risk heatmaps or virtual 
reality that translates formal engineering terminology into crew colloquial descriptions that are 
aligned with crew mental models and mission goals. 
 
Extracting useful information from data is complicated and difficult for machines (Lee & Siau, 
2001) and for humans (Greitzer, 2005). Some common problems for machines include “missing 
data” management (Brown & Kros, 2003), text classification (Zaghloul et al., 2009) or 
interpreting rare events (Weiss, 2004). For humans some of the processes required to sift through 
reems of data include: 

• validation: ensuring the supplied data is relevant and correct 
• sorting: arranging the data into sets or into some sequence 
• summarizing: reducing the data to its main points 
• aggregation: combining multiple pieces of data 

 
While experts can perform these processes almost intuitively, a crew of four will not have 
expertise in all critical areas. They will, however, have received a great deal of training - 
underscoring the importance of information retention in, and retrieval from, long term memory. 
A critical experiment would be to assess crew knowledge, acquired throughout their multiple 
years of training, during exposure to elevated CO2. 
 
Not only should the technology push information, but it should be capable of answering the 
crew’s queries for additional information. Data mining systems should enable information 
discovery from each crewmember’s perspective (i.e., at different levels of granularity). It is 
important to display anomaly-relevant information in a manner that facilitates understanding for 
the individual crew members and for the team. In time-critical, dangerous situations, the time 
required for the crew to review information can lead to costly delays and errors. The Vista 
Project was initiated to help MER engineers interpret Space Shuttle telemetry data (Horvitz & 
Barry, 1995). The idea was to manage what was displayed using probabilistic and decision-
theoretic models. Although the engineer could access any data they wish, a software program 
determined the costs and benefits of proactively displaying certain data. 
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Partially addressing this Technology Challenge from the HCAAM researchers are Texas A&M’s 
(PI: Selva) HCAAM virtual assistant for Spacecraft Anomaly Treatment, University of 
Michigan’s (PI: Stirling) Responsive Multimodal Human-Automation systems for SA, and 
TRACLabs’ (PI: Schreckenghost) Enhancing SA of Automated Procedures. 
 
Holden et al. (2019) identified nine tasks the crew will need to perform autonomously that are 
relevant to this Technology Challenge including the need for crew to access information from 
documentation, to use lessons learned, to proactively communicate, to analyze data and to 
integrate information. 
 
The fifth column of Table 2 lists publications reporting significant CO2 exposure effects on the 
use of existing data and information to diagnose the potential sources of a failure, to isolate the 
fault and to determine the time criticality of the problem (TC#5). Table 2.1 expands upon this 
research, summarizing details about the studies. Nine tasks were identified and categorized into 
three domains: use of existing information, executive functions and information integration. 
 

Table 2.1. TC#5: Elevated CO2 Outcomes, Provide Essential Information for Diagnosis 

Publication Task 
CO2 Concentration (ppm) 
Decreased Performance 
Compared to Baseline 

Exposure 
Duration N 

 Use of existing information    
Allen et al. (2016) Information usage 945 8 hr 24 
Satish et al. (2012) Information usage 1000, 2500 2.5 hr 22 
 Executive Functions    
Allen et al. (2019) Complex flight maneuvers 1500 (sign effect after 

120 min), 2500 (sign 
effect after 80 min) 

3 hr 30 

Gill et al. (2014) Auditory n-back (1, 2 or 3-
back difficulty adjustments) 

75000, 85000 4 min 12 

Lui et al. (2017) Addition, Subtraction 3000 3 hr 12 
Maula et al. (2017) Information retrieval 2600 4 hr 36 
Snow et al. (2019) Visual and verbal 

recognition 
2700 < 60 min 31 

Zhang et al. (2017) Mental rotation 3000 5.25 hr 25 
Zhang et al. (2017) Addition 3000 5.25 hr 25 
No study identified Information Integration    

 
 
For humans to examine existing information in order to diagnose the source of a failure requires 
complex cognitive processing. To troubleshoot the source of an anomaly requires reasoning, 
working memory, flexible thinking and long term memory recall. “Information usage,” which 
refers to the ability to use information that has been provided or gathered was found to be 
affected by elevated CO2 (Allen et al., 2016; Satish et al., 2012). 
 
Executive functions are affected by elevated CO2 exposure. Allen et al. (2019) recruited 30 
commercial airline pilots to perform 21 maneuvers in a flight simulator. An FAA-designated 
Pilot Examiner rated the pilot’s performance. Passing rates were significantly lower for the more 
difficult maneuvers when the pilots were exposed to elevated CO2. They found that the higher 
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CO2 concentration affected performance more quickly. Gill et al. (2014) found that a 4 min 
exposure to CO2 reduced response accuracy. Maula et al. (2017) exposed 36 subjects to 2600 
ppm for 4 hours. The Maula et al. (2017) reported that a 4 hour exposure to 2600 ppm 
significantly affected performance on an information retrieval task that involved answering a 
specific question such as “Which multilingual country, with area over 100,000 km2, has the 
highest gross national income?” by inspecting a table of 20 countries containing seven items of 
information for each country. When asked to recognize visual and verbal items, subjects exposed 
to 2700 ppm performed more poorly (Snow et al., 2019). It is not clear whether the Snow et al. 
results were due to a failure of recognition or of learning. Mental rotation and addition response 
time increased and addition accuracy decreased during exposure to 3000 ppm CO2 (Zhang et al., 
2017). Lui et al. (2017) found that addition accuracy was significantly reduced, but their results 
were likely attributed to an increase in temperature rather than elevated CO2. 
 
CO2 effects on recall of information stored in long term memory was explored by Sayers et al. 
(1987). The task was to read a short story and to recall information from the story at a later time. 
They did not find a significant effect of CO2. This was the only identified study investigating 
long term memory retrieval. 
 
No research studies have pointedly investigated CO2 effects on information integration. 
 
2.2.2.2. Technology Challenge #6 in Table 2 
TC#6 relates to the provision of failure response recommendations with rationales. Technology 
that can provide solutions is commonly referred to as decision support. Decision support is 
crucial for an autonomous crew. The ExMC element of the HRP is currently assessing the 
feasibility of a clinical decision support system (Lindsey et al., 2016). Landon & O’Keefe (2018) 
describe the need for crew to have an intelligent tutoring system. Crew autonomy demonstrations 
include autonomous procedures (Beisert et al., 2013; Stetson et al., 2015) and crew self-
scheduling (to be discussed in Section 2.2.3.2). Procedures, for example, can include additional 
information to help guide their execution or contain automated commands. Autonomous 
procedures have been successfully developed for non-critical tasks such as treadmill 
maintenance, ventilation flow measurements, extravehicular mobility units (EMU) loop scrubs 
and sensor placement activities (Frank et al., 2016). Rader et al. (2013) and Frank et al. (2013) 
summarize the NASA-sponsored demonstrations on the impact of time delay in analog settings. 
Over the past 10 years, the NASA Autonomous Systems and Operations (ASO) project has 
developed and demonstrated many autonomy enabling technologies using artificial intelligence 
techniques (Frank, 2019). Here, one example will be briefly described. 
 
Currently, the ISS crew has no insight into the current state of water quality or system faults. 
They rely on MCC to monitor, control and plan water quality analyses and faults with the 
system. During the 2014-2015 time period, Frank et al. (2016) performed a 7-month 
demonstration where ISS crew autonomously performed tasks required for the total organic 
carbon analyzer (TOCA) including fault diagnosis and response. TOCA data were presented to 
the crew in real-time and software provided recommended responses to actual situations. 
Although MCC was still involved (the crew provided next-step recommendations to MCC) and 
only one system was involved during this demonstration, its success is encouraging for non-
experts to respond to faults in a complex system. One problem with the demonstration related to 
the crew’s extreme trust in the system. They had not been adequately trained to understand the 
system’s limitations. 
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A vulnerability that human’s display in anomaly response is referred to as premature attention 
narrowing, where the responder(s) become so fixated on an initial hypothesis that counter-
evidence is discounted (Woods et al., 1987; De Keyser & Woods, 1990). Gettys et al. (1987) 
found that premature attentional narrowing can be reduced with explicit alternative hypotheses. 
Technology can aid the responder by providing these alternative hypotheses (Fenton et al., 
2001). On the other hand, the list provided can narrow the range of data considered and 
hypotheses they explore (Layton et al., 1994). Therefore, system design characteristics that 
broaden the solution space to reduce mis-assessments and project possible worst case scenarios 
are of paramount importance. It is also important to train crew to develop an independent 
assessment prior to interacting with other crew members or the machine agent to reduce fixation 
and improve detection of weaknesses in an assessment or plan (Layton et al., 1994; Smith et al., 
2009). If more than one anomaly candidate is proposed, the system could automatically perform 
other tests or employ historical data such as probabilities to discriminate between the 
alternatives. Otherwise, crew experience or trial and error may be required to determine the most 
appropriate response. 
 
Rule-based systems, fault trees, model-based and machine learning approaches have been used to 
diagnose anomalies. Rule-based diagnostics characterize the experience of expert engineers in 
the form of rules. Fault trees, the most commonly used method, use symptoms or test results 
followed by a branching decision tree composed of actions, decisions and recommendations. 
Models represent the actual system, using observations and stored information about the system. 
Machine learning approaches exploit knowledge of previous successful or failed diagnoses to 
continually improve system performance or to use available domain data to automatically 
generate knowledge. Other approaches include fuzzy logic and artificial neural networks. These 
approaches face enormous challenges dealing with big data (Xu et al., 2017). 
 
Holden et al. (2019) identified only one critical task that the crew must perform that is relevant to 
this Technology Challenge, to determine candidate paths. 
 
The fifth column of Table 2 lists publications reporting significant CO2 exposure effects relating 
to the provision of recommendations (TC#6). Table 2.2 expands upon this research, summarizing 
details about the studies. Ten tasks are separated into two categories, problem solving and 
response selection. 
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Table 2.2. TC#6: Elevated CO2 Outcomes, Provide Failure Response 
Recommendations with Rationales 

Publication Task 
CO2 Concentration (ppm) 
Decreased Performance 
Compared to Baseline 

Exposure 
Duration N 

 Problem Solving    
Sayers et al. (1987) 
Exp 1 

Logic 65000, 75000 20 min 10 

Sayers et al. (1987) 
Exp 2 

Logic 65000 70 min 21 

Freiberger et al. 
(2016) 

Planning & 
Problem Solving 

75000 ~30 min 42 

 Response Selection    
Allen et al. (2016) Strategy 945 8 hr 24 
Satish et al. (2012) Strategy 1000, 2500 2.5 hr 22 
Scully et al. (2019) Strategy 1200 3 hr 22 
Allen et al. (2016) Crisis Response 945 8 hr 24 
Satish et al. (2012) Crisis Response 2500 2.5 hr 22 
Scully et al. (2019) Crisis Response 1200 3 hrs 22 
Vercruyssen (2014) Response Selection 40000 60 min 6 

 
 
For a self-reliant crew to effectively use an intelligent decision support system would require 
logic, strategic processing, planning, problem solving and a response. CO2 research provides 
evidence that all of these cognitive requirements are compromised. Sayers et al. (1987) reported 
that subjects solving 16 logic problems (e.g., “B does not follow A; BA”) took longer after a 
five-minute exposure to elevated CO2 which peaked at 10 min exposure duration. Freiberger et 
al. (2016) tested subjects on a planning and problem solving task that involved an aircraft fuel 
management scenario with failing fuel pumps. The SMS Crisis Response refers to the “ability to 
plan, stay prepared, and strategize under emergency conditions” and Strategy refers to the 
“ability to use well-integrated solutions with the help of optimal use of information and 
planning.” In two separate experiments, Vercruyssen (2014) found that elevated CO2  slowed 
responses and increased errors on a response selection task, particularly when the response was 
made more complex and when the stimulus was degraded. 
 
2.2.3. Anomaly Response Contingency Management and Recovery 
Anomaly response and contingency management and recovery is the final process in anomaly 
response identified by Woods & Hollnagel (2006). Anomaly response contingency management 
is highly interwoven with information management and the diagnostic process. After the initial 
response to the critical anomaly, a self-reliant crew will need to monitor the system’s reaction, 
continue troubleshooting the problem and react to the consequences of their initial response. In 
accordance with the HSIA risk, we are assuming a time-critical and possibly complex anomaly 
has occurred. It is likely that an intervention is required before the nature and source of the 
anomaly are identified to buy time for further diagnosis. How the crew responded to the anomaly 
will affect how the event progresses and the crew will need to predict that progression. The 
intervention may itself pose an additional, unexpected risk or provide further diagnostic 
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information. As the situation evolves, the crew will need to evaluate the contingencies that might 
arise in light of the anomaly. 
 
Table 3 summarizes three technology challenges identified by Wu & Vera (2019) that relate to 
anomaly response contingency management and recovery. Each will be discussed separately in 
the following three sub-sections (2.2.3.1 through 2.2.3.3) 
 

Table 3. Anomaly Response Contingency Management and Recovery 

 Key Technology 
Challenge 

HCAAM Projects Autonomous 
Task List 

Significant CO2 Effects 

7 Adapt to the 
dynamics of the task 

Virt Asst for 
LDEM Spcraft 
Anomaly (Selva) 

Validate 
solutions (Cg); 

Allen et al. (2016) 
Satish et al. (2012) 
Scully et al. (2019) 
Savulich et al. (2019) 
Snow et al. (2019) 

8 Re-schedule in the 
case of schedule 
disruption; 
Finite 
resources/logistics 
management (RFID) 

Crew Autonomy 
through Self-
Scheduling 
(Marquez); 
Crew Task 
Performance 
Quantification 
(Fanchiang) 

Schedule tasks 
and monitor 
performance of 
work … (Ab); 
Perform 
inventory and 
consumables 
management (15) 

Allen et al. (2016) 
Basner et al. (2017) 
Freiberger et al. (2016) 
Manzey et al. (1998) 
Satish et al. (2012) 
Savulich et al. (2019) 
Scully et al. (2019) 
 

9 Update database to 
reflect anomaly 
response processes 
and lessons learned 

 Document 
resolutions, new 
data … (Ch) 

Basner et al. (2017) 
Manzey et al. (1998) 
Maula et al. (2017) 

 
 
2.2.3.1. Technology Challenge #7 in Table 3 
After responding to an anomaly, the crew will need to continue to monitor for new changes and 
whether the intervention produced the desired, and expected, results. Any abnormalities will 
require further interventions, evaluation and re-planning. The initial assessment of the situation 
may have been appropriate given the evidence available, but people are vulnerable to “garden 
path” problems. Garden path problems refer to the reduced ability to shift attention from a 
previous focus to a new one to explore relevant changes. Flexibility is critical. If new stimuli are 
distractions, they must be identified as so, and ignored. 
 
After diagnosis, crew may follow the steps within a pre-written procedure. Procedures should be 
written to accommodate the general risk of misdiagnosis. In other words, contain a set of steps to 
redirect the crew to consider another plausible fault-type. Brittle AI refers to a system, designed 
for a certain task, that is unable to perform when faced with unanticipated events (Anderson & 
Perlis, 2005). Humans typically can perform quite well under sudden disturbances, but does 
elevated CO2 lower the perturbation tolerance? 
 
People will often overlook the side effects of changes to a plan (Smith et al., 2004). This is a 
time where premature narrowing can again occur. Anomaly response can deteriorate when the 
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responder loses track of, or doesn’t grasp, the implications of cascading events (Smith et al., 
1997; Woods & Patterson 2000). Re-planning may focus on working around specific bottlenecks 
and missing the byproducts of other constraints (Shattuck & Woods 2000). Responses can be 
poorly synchronized in time leaving gaps that look locally appropriate but that actually work at 
cross-purposes when considered from a broader perspective (Klein, 2007). Collaborative cross-
checks across crew members are critical at this time (Patterson et al., 2004; Fischer & Orasanu, 
2000). Crew should be trained to implement broadening checks to help to revise previous 
assessments. Contingency plans may guide responses to evolving situations. 
 
Partially addressing this Technology Challenge may be Texas A&M’s (PI: Selva) HCAAM 
virtual assistant. 
 
Holden et al.’s (2019) Autonomous Task List identifies a crew task referred to as “validate 
solutions” that relates to this Technology Challenge. 
 
The fifth column of Table 3 lists publications reporting significant CO2 exposure effects for 
adapting to the dynamics of a task (TC#7). Table 3.1 expands upon this research, summarizing 
details about five studies that have reported a reduction in cognitive flexibility during elevated 
CO2 exposure. 
 

Table 3.1. TC#7: Elevated CO2 Outcomes, Adapt to the Dynamics of the Task 

Publication Task 

CO2 Concentration 
(ppm) Decreased 

Performance Compared 
to Baseline 

Exposure 
Duration N 

 Cognitive Flexibility    
Savulich et al. 
(2019) Exp 1 

Extra-dimensional shift errors 75000 20 min 44 

Snow et al. (2019) Shifting Attention Task of the 
CNS Vital Signs test battery 

2700 50 min 31 

Allen et al. (2016) Breadth of Approach 945 8 hr 24 
Satish et al. (2012) Breadth of Approach 1000, 2500 2.5 hr 22 
Scully et al. 
(2019) 

Breadth of Approach 1200 3 hr 22 

No study 
identified 

Team Coordination    

 
 
Cognitive flexibility is a critical executive function that refers to the ability to adapt behaviors in 
response to changes. It is typically investigated using task-switching paradigms. Savulich et al. 
(2019) used a complex rule acquisition task from the Cambridge Neuropsychological Test 
Automated Battery (CANTAB) test battery that they suggested required visual discrimination, 
attentional set formation, maintenance of attention, set shifting and cognitive flexibility. Using 
feedback, subjects had more difficulty learning an arbitrary rule that changes after six correct 
responses when exposed to elevated CO2. Snow et al. (2019) found that at 2700 ppm, subjects 
had significantly more errors while shifting from one instruction set to another. Satish et al. 
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(2012) and Allen et al. (2016) reported that flexibility in approach to the task (i.e., breadth of 
approach) was affected by elevated CO2. 
 
No research studies were identified that have pointedly investigated CO2 effects on teamwork. 
 
2.2.3.2. Technology Challenge #8 in Table 3 
Anomalous events will have disrupted ongoing plans that can have cascading effects and 
change the tempo of operations. The crew may need to manage multiple interleaved tasks and 
be prepared to revise their assessment as new evidence emerges. It is vital that during critical 
times and critical operations that alarms and alerts provide informative information (Kemeny, 
1979), are discriminable from one another (Patterson, 1990) and selectively control attention 
(Murray & Cox, 1989) without high false alarm rates (Getty et al., 1995). Alarms must be 
explicitly designed to function effectively to redirect attention or serve as part of a distributed 
system that coordinates activities as situations evolve (Woods & Hollnagel, 2006). To do so will 
require a system that is aware of what the crew is currently doing to judge whether they should 
be interrupted. 
 
The anomaly may have implications for plans in progress requiring reprioritizing mission goals. 
During exploration missions, the crew need the ability to self-schedule and to re-schedule. To 
that end, Marquez et al. (2019) reported on a technology demonstration of a self-scheduling tool 
referred to as Playbook. Over the course of their mission, one astronaut used the tool with many 
Lessons Learned for the developers. Marquez’s Crew Autonomy through Self-Scheduling 
HCAAM project directly addresses the need for self-scheduling. Interactions between this 
project and Fanchiang’s Crew Task Performance Quantification HCAAM project will further 
tackle this need. 
 
Often, others will not have been present during the initial handling of an anomaly and must be 
updated. The update should provide data and information about the events, the dynamics and 
temporal flow of the events, other potentially relevant parameters and what actions or 
interventions have been and are being taken. Technology could aid in this storytelling if the 
distributed system is coordinated. Otherwise, the attending crewmember will need to 
communicate the anomaly status while attending to and handling cascading events. It is also 
important for the crew to project how the anomaly will evolve into the future. 
 
The fifth column of Table 3 lists publications reporting significant CO2 exposure effects on 
rescheduling in the case of schedule disruption (TC#8). Table 3.2 expands upon this research, 
summarizing details about the studies. 
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Table 3.2. TC#8: Elevated CO2 Outcomes, Recognizing and Handling Cascading Events 

Publication Task 

CO2 Concentration 
(ppm) Decreased 

Performance 
Compared to Baseline 

Exposure 
Duration N 

 Working Memory    
Savulich et al. 
(2019) 

Spatial WM 75000 20 min 27 

 Visuo-Motor Responses    
Basner et al. (2017) Motor Praxis accuracy 5050 26.5 hr 6 
Manzey et al. (1998) Unstable tracking 12500 26 days 4 
 Planning    
Freiberger et al. 
(2016) 

Planning & Problem 
Solving 

75000 ~30 min 42 

 Focused Activity    
Allen et al. (2016) Focused activity 1400 8 hr 24 
Satish et al. (2012) Focused activity 2500 2.5 hr 22 
Scully et al. (2019) Focused activity 1200 3 hr 22 
No study identified Projecting into the Future    

 
 
As indicated in previous technology challenge tables, elevated CO2 effects spatial working 
memory (Savulich et al., 2019), visuo-motor tracking (Basner et al., 2017; Manzey et al., 1998), 
planning (Freiberger et al., 2016) and focused activity (Satish et al., 2012; Allen et al., 2016; 
Scully et al., 2019) which would all be required to manipulate the Playbook interface. 
 
2.2.3.3. Technology Challenge #9 in Table 3 
TC#9 refers to updating databases to reflect anomaly response processes and lessons learned. 
Erroneous or unusual observed behaviors must be recorded. Currently, mission operators and 
integration specialists record problem reports of off-nominal performance, deviations from 
design and human errors that occur while building and operating these systems. Anomaly, or 
problem, reports contain descriptions of the anomalous event, a description of its root cause, a 
risk rating, a characterization of the corrective actions and the residual risk arising from the 
corrective actions. Layman et al. (2012) analyzed over 14 thousand unmanned mission anomalies 
and found that approximately 25% of them are software related. Since then, that same research 
group has focused on problem reports which contain human operator errors in addition to 
hardware and software defects or environment induced failures (Layman et al., 2016). They 
report that analyzing these data is an intensive manual process because of the range of forms 
used, the use of natural language and data quality issues. There are a number of publications 
addressing the challenge of analyzing unstructured data (e.g., Agrawal et al., 2018). 
 
In addition, lessons learned need to be recorded. This requires recalling actions taken and their 
consequences during the event, typing into a lessons learned database, verbally updating the 
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ground, projecting how this information may be used in the future and concentrating on the 
task at hand. 
 
Holden et al. (2019) list document resolutions, new data and lessons learned in their cross-
cutting task list. 
 
TC#9 requires many of the cognitive and motor capabilities that were listed under other 
challenges. Rather than repeat these discussions of the individual studies, the reader is referred to 
the relevant sections in Table 3.3. There were no studies identified that have investigated CO2 
effects on the task of communication, referring to communication with the ground. 
 

Table 3.3. TC#9: Elevated CO2 Outcomes, Update Databases to Reflect 
Anomaly Response Processes and Lessons Learned 

Publication Task 

CO2 Concentration 
(ppm) Decreased 

Performance Compared 
to Baseline 

Exposure 
Duration N 

 Recall    
Maula et al. (2017) 
See discussion for 
TC#3 and TC#5 

Information retrieval 2600 4 hr 36 

 Motor Response    
Basner et al. (2017) 
See discussion for 
TC#8 

Motor Praxis 
accuracy 

5050 26.5 hr 6 

Manzey et al. (1998) 
See discussion for 
TC#1 and TC#8 

Unstable tracking 12500 26 days 4 

No study identified Communication    
See discussion for 
TC#3 

Pattern Recognition/ 
Projecting 

   

Allen et al. (2016) Information seeking 945, 1400 8 hr 24 
Savulich et al. (2019) Information search 75000 20 min 27 
Scully et al. (2019) Information seeking 1200 3 hr 22 
Basner et al. (2017) Visual obj learning 

acc 
5050 26.5 hr 6 

Scully et al. (2019) Visual obj learning 
acc 

2500 3 hr 22 

See discussion for 
TC#2 

Selective Attention    

Allen et al. (2016) Task orientation 945 8 hr 24 
Satish et al. (2012) Task orientation 1000, 2500 2.5 hr 22 
Scully et al. (2019) Task orientation 1200, 

2500 (improvement) 
3 hr 22 

Satish et al. (2012) Applied activity 1000, 2500 2.5 hr 22 
Scully et al. (2019) Applied activity 1200, 2500 3 hr 22 
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Two studies were identified that did not find that text typing errors nor number of words typed 
were affected by elevated CO2 levels ranging from 3000 to 5000 ppm for 4.25 and 2.5 hours 
exposure durations, respectively (Zhang et al., 2016; Zhang et al., 2017). However, subjects were 
copying text and the researchers did not log keystrokes. Keystroke logging provides a detailed 
record of the process of writing as it unfolds in time. Pauses, bursts and revisions can provide a 
general interpretation of the cognitive processes involved (Galbraith & Baaijen, 2019). Pauses 
reflect levels of planning, reflection, rereading and text production. Bursts of keystrokes reflect 
an initial formulation of thought or improvement to previously formulated text. Revisions reflect 
semi-automatic correction of errors or a systematic attempt to modify content. Since 
crewmembers will be creating their own text (not copying text), a valuable experiment would be 
to measure potential CO2 elevation effects on keystroke parameters, rather than merely typing 
speed and errors. 
 
 
3. Discussion 
Substantial resources are required to remove carbon dioxide within spacecraft. As a result 
average CO2 levels are elevated relative to Earth normal. The goal of this report was to 
characterize how research-identified cognitive and motor changes resulting from elevated levels 
of carbon dioxide (CO2) could affect an exploration crew’s ability to independently respond to 
time-critical anomalies. Exploration crews to the moon and then to Mars will require increasing 
self-reliance to resolve the issues that are currently handled by a large team of terrestrial 
experts. The current assessment of published research revealed statistically significant CO2 
effects on performance in the three main anomaly response categories; detection and 
recognition that an anomaly has occurred, diagnosis of the anomaly and response contingency 
management and recovery. 
 
It would be beneficial to have software that could aid the crew through anomaly resolution, 
however, Wu & Vera reported that the current maturity of technology is inadequate. They refer 
to these inadequacies as Technology Challenges. Nine technology challenges align with the three 
anomaly response processes. Eight of the nine technology challenges are associated with 
published research showing that performance is significantly affected by elevated CO2 and will 
require technological support. 
 
3.1. A Threshold Limit Value (TLV) 
This report has rationally addressed how elevated CO2 could affect a crew’s response to 
anomalies. To support the setting of a TLV, Figure 3 plots exposure duration as a function of 
CO2 concentration for the research contained in Tables 1, 2, and 3. 
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Figure 3. Graphic containing the studies reporting a significant effect of elevated CO2 on 

cognitive or motor performance. CO2 exposure duration (in hours) is shown as a 
function of CO2 concentration in parts per million (ppm). Because a wide range of 
durations and concentrations have been used in the literature, the axes are in log-log 
coordinates. Point size is an indicator of how many different cognitive or motor tasks 
were significantly affected by CO2. The largest points, for example, represents 6 tasks 
that were negatively affected at that exposure duration and CO2 concentration. The 
solid line is an exponential function fit to the data. 

 
 
ISS CO2 levels predominantly fluctuate in the 3000 to 5000 ppm range. Unlike the published 
literature, the crew’s exposure is chronic. It can be seen in Figure 3 that the data at CO2 
concentrations within the range relevant to spaceflight were obtained at short-term exposure 
durations (i.e., less than an hour to up to 26.5 hours). Except for one study (Manzey et al., 1998, 
not shown in this Figure) where only 4 subjects were were exposed for 26 days (624 hours), 
higher CO2 concentrations are affiliated with exposure durations of just over an hour or less. The 
fitted curve could be used to help define a TLV. Unfortunately, there are missing data from 5050 
to 25000 ppm in order to be certain that this curve depicts an accurate threshold (e.g., a linear 
relationship may be better fit). But, it does represent current knowledge. 
 
NASA’s main goal is to send and return crew on exploration missions without compromising 
safety or the mission. Although there are some studies that have failed to show negative effects 
of elevated CO2, many studies have established adverse outcomes. A conservative approach 
therefore dictates that the effects of elevated CO2 be classified as a risk to anomaly response. 
Figure 2 bounds the problem of the HSIA risk. The Figure depicts how multiple spaceflight and 
task-related stressors can affect the crew’s ability to respond to anomalies. The effects of these 
stressors in concert will only exacerbate the effects of elevated CO2, underscoring the importance 
of a conservative approach. 
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3.2. Critique of the CO2 Research 
It is difficult to determine why some research shows no effect of elevated CO2, while other 
research show a significant effect. Because of the complexity of human physiological and 
psychological processes, the range of tasks and participant experience with the task, other factors 
may be confounding the results. For example, exposure to elevated CO2 can result in headache 
and subjective fatigue which are both associated with a decline in sustained attention. However, 
most studies have not collected this vital information. In addition, wide differences in CO2 
tolerance have been observed. Most result sections provide averaged data, obscuring potential 
individual differences in response to elevated CO2. Future studies investigating the performance 
implications of elevated CO2 should gather, analyze and publish information about the potential 
confounds that could help uncover the apparent discrepancies in the literature. 
 
Interestingly, we (ground-based earthlings) are often exposed to elevated CO2 concentrations. 
Depending upon the number of people, square footage, and ventilation rate, indoor CO2 

concentrations can reach: 
• 6077 ppm in submarines (Mudgett et al., 2018; average of 2600 ppm) 
• 1400 ppm in offices (Arendt et al., 2018) 
• 2300 ppm in school rooms (Wargocki et al., 2020) 
• 771 ppm in underground subway stations (Hwang et al., 2017) 
• 1353 to 3000 ppm in airplane cabins (Cao et al., 2018) 
• 20000 ppm in motorcycle helmets (Bruhwiler et al., 2005) 
 

How acclimatized the study participants are to elevated CO2 was not determined in any of the 
studies referenced in this report. Further, how well the astronauts acclimatize to chronically 
elevated CO2 during spaceflight would need to be systematically identified to truly match an 
astronaut-like participant population with spaceflight crew. 
 
Technical troubleshooting processes differ between experts and novices (Johnson, 1988). Experts 
not only have extensive knowledge, their knowledge is more effectively organized and better 
accessible in long-term memory (Ericsson & Lehmann, 1996). Non experts will need to build a 
mental representation of the system to reason about the system’s behavior. Crew on a Mars 
mission will have been trained to identify most expected anomalies. Although they may not be 
experts in the specific technology, the amount and organization of their domain knowledge will 
allow them to build a representation faster, and their strategic knowledge permits the application 
of effective strategies (Schaafstal et al., 2000). 
 
There is a need to conduct studies on the effects of elevated CO2 on problem solving (which 
includes decision making) in a complex environment using scenarios that are relevant to the 
participant’s expertise. Participants who are not trained for the situation in the scenarios will not 
respond in the same way as experts. To conduct meaningful research, the experimental tasks 
must be selected or constructed to resemble the sub-population of interest. For example, Cao et 
al. (2019) asked 30 commercial airline pilots to perform a series of maneuvers in a flight 
simulator at three CO2 concentrations: 700, 1500 and 2500 ppm. Pilots were less likely to pass a 
maneuver with increasing CO2, particularly for the more difficult maneuvers. It is unclear how 
the results of studies with astronaut-like participants tested within medical or military scenarios 
that are not time- or safety-critical will generalize to highly-trained astronauts responding to an 
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emergency in space. Taken a step further, reliance on research using context-free psychophysical 
tests reduces NASA’s ability to generalize how a crew will respond to elevated CO2. 
 
3.3. Technological Support 
An important issue for the definition of functional requirements of an exploration spacecraft is 
the question of how automation could aid the crew given the stressors to which they are exposed. 
NASA should develop and test principles for decision support, information display, just-in-time 
and recurrent training system design, and simulation that would mitigate elevated CO2 stressor 
effects. To take a practical approach to such a complex problem requires strong theoretical 
positions such as naturalistic decision making, team performance and effectiveness and shared 
mental models. These theoretical perspectives describe how highly trained crew would gather 
and use information, how they perceive the situation, how teammates will interact with one 
another and how task demands will lead to strategy adjustments. From these theories, hypotheses 
can be generated which will in turn drive required empirical work. 
 
Harris et al. (1995) found that operator performance is improved, and fatigue and workload 
reduced, with adaptive automation that performs a tracking subtask while the subject manages 
resources and performs other tasks. This topic relates to two critical decisions that the HRP must 
make: 1) Should task allocation be static with a fixed allocation between the crew and the 
technology or be adjusted over time and tailored to the operators’ competences and current 
workload (Sauer et al., 2012), and if adjustable automation is chosen; and 2) Will spaceflight 
systems be adaptable, adaptive or both? In adaptable automation, task allocation would be 
decided by the crew. In adaptive automation the technology makes this decision (Parasuraman & 
Wickens, 2008). There are benefits to both adaptable and adaptive automation over fixed levels 
of automation (e.g., Sauer et al., 2012). Moray et al. (2000) found that an event-driven adaptive 
automation mode did not allow operators to adapt the automation level to their current need, 
since the level of automation was predefined for each type of fault. In contrast, adaptable 
automation permitted actual preferences to be determined, according to such factors as level of 
trust towards the automation. It is likely that some blend of fixed, adaptable and adaptive 
automation is required, depending on technological maturity. NASA-STD-3001_Vol_2_revb 
section 10.6.1.6 requires that the operator be able to determine the level of automation. Other 
critical requirements of adaptable automation are absent in the standard such as providing the 
remaining time to a change in level of automation, reasons for the level and a preview of ongoing 
and future actions (Beggiato et al., 2015). 
 
3.4. Research Gaps 
Several research gaps were identified during this project: 

1. A cognitive task analysis that is based upon the tasks and abilities (Stuster et 
al., 2019) and generalizable skills and knowledge (Stuster et al., 2018) for 
exploration missions identified previously. 

2. Exploration missions will consist of a team of astronauts. A large gap in our 
knowledge involves how elevated CO2 may affect agent teaming performance, 
particularly for teams in isolation and confinement. 

3. Assessment of CO2 effects on trust-in or reliance-on automation.  
4. Assessment of crew knowledge, acquired throughout their multiple years of 

training, during exposure to elevated CO2. 
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5. In preparation for an autonomous Mars crew, characterizations should be 
performed for other stressors, on metacognitive processes and on team 
responses, as has been done here for CO2 effects on anomaly response. 

6. There was no published research identified that investigated how elevated CO2 

affects information integration. 
7. There was no published research identified that investigated elevated CO2 

effects on keystrokes. 
8. There was no published research identified that investigated elevated CO2 

effects on communication. 
9. There was no published research identified that investigated elevated CO2 

effects on projecting what will happen in the future. 
 
3.5. Potential Crew Performance Monitoring Measures 
Wenzel (2019) described a set of human factors standard measures applicable for research in 
spaceflight analogs, on ISS and long-duration exploration missions. Table 4 shows critical 
cognitive and physiological effects of elevated CO2 exposure and potentially useful diagnostic 
monitoring measures. These measures differ from some of the Wenzel standard measures 
because their utility is for anomaly resolution.  Many of the performance measures are non-
intrusive, whereas others are psychophysically-based tests, such as the Visual Object Learning 
Test (VOLT). 
 

Table 4. Cognitive, Motor and Physiological Effects of Elevated CO2 
and Potentially Useful Crew Diagnostic Monitoring Measures 

Stressor Effects 
(CO2-specific) 

Example Measures of Crew 
Performance 

Cognitive Cognitive 
Alertness Eye Fixations 
Vigilance PVT 
Attention Eye Movements 
Serial Choice RT Key-Strokes 
Activity Level Motion Detectors/Wrist Actigraphy 
Visuo-motor Key-Strokes/MPT 
Strategy SMS-like Measures 
Information Seeking Eye Movements 
Object learning VOLT 
Complex maneuvers Glove or Control Sensors/Lunar 

Vehicle Steering Sensors 
Outlier Detection Eye Movements 
Physiological Physiological 
Headache Monitor Medications 
Increased Fatigue Activity Speed 
Increased Cerebral Blood Flow Diffuse Correlation Spectroscopy        
Increased Heart Rate Wrist Actigraphy 
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4. Conclusions 
Recognizing what is anomalous, diagnosing what is producing the anomaly, analyzing the 
implications of the anomaly, modifying plans and reprioritizing goals to maintain control are 
quite difficult tasks vulnerable to many generic forms of failure (e.g., premature narrowing). The 
available evidence suggests that elevated CO2 could affect the cognitive processes of detection, 
diagnosis and recovery used in anomaly response. Without mature technology to aid the crew, 
elevated CO2 could exacerbate the risk that crew may not be able to independently respond to 
these events. 
 
 
  



 
31 

References 
Agrawal, A., Fu, W., & Menzies, T. (2018). What is wrong with topic modeling? and how to fix 

it using search-based software engineering. Information and Software Technology, 98, 74-88. 
Allen, J. G., MacNaughton, P., Cedeno-Laurent, J. G., Cao, X., Flanigan, S., Vallarino, J., ... & 

Spengler, J. D. (2019). Airplane pilot flight performance on 21 maneuvers in a flight 
simulator under varying carbon dioxide concentrations. Journal of Exposure Science & 
Environmental Epidemiology, 29(4), 457-468. 

Allen, J. G., MacNaughton, P., Satish, U., Santanam, S., Vallarino, J., & Spengler, J. D. (2016). 
Associations of cognitive function scores with carbon dioxide, ventilation, and volatile 
organic compound exposures in office workers: a controlled exposure study of green and 
conventional office environments. Environmental Health Perspectives, 124(6), 805-812. 

Alpern, M., & Hendley, C. D. (1952). Visual functions as indices of physiological changes in the 
acid-base balance of the blood. Optometry and Vision Science, 29(6), 301-314. 

Anderson, M. L., & Perlis, D. R. (2005). Logic, self-awareness and self-improvement: The 
metacognitive loop and the problem of brittleness. Journal of Logic and Computation, 15(1), 
21-40. 

Arendt, K., Johansen, A., Jørgensen, B. N., Kjærgaard, M. B., Mattera, C. G., Sangogboye, F. C., 
... & Veje, C. T. (2018, November). Room-level occupant counts, airflow and CO2 data from 
an office building. In Proceedings of the First Workshop on Data Acquisition To Analysis 
(pp. 13-14). 

Beggiato, M., Pereira, M., Petzoldt, T., & Krems, J. (2015). Learning and development of trust, 
acceptance and the mental model of ACC. A longitudinal on-road study. Transportation 
Research Part F: Traffic Psychology and Behaviour, 35, 75-84. 

Basner, M., Nasrini, J., Hermosillo, E., McGuire, S., Dinges, D. F., Moore, T. M., ... & 
Donoviel, D. (2018). Effects of -12° head-down tilt with and without elevated levels of CO2 
on cognitive performance: The SPACECOT study. Journal of Applied Physiology, 124(3), 
750-760. 

Beisert, S., Rodriggs, M., Moreno, F., Korth, D., Gibson, S., Lee, Y. H., & Eagles, D. E. (2013). 
Development and Execution of Autonomous Procedures Onboard the International Space 
Station to Support the Next Phase of Human Space Exploration. Paper Presented at the 2013 
AIAA Space Conference, 10–12 September, San Diego, CA. 

Brown, M. L., & Kros, J. F. (2003). Data mining and the impact of missing data. Industrial 
Management & Data Systems, 103(8), 621. 

Brühwiler, P. A., Stämpfli, R., Huber, R., & Camenzind, M. (2005). CO2 and O2 concentrations 
in integral motorcycle helmets. Applied ergonomics, 36(5), 625-633. 

Cannon-Bowers, J. A., & Salas, E. (1998). Team performance and training in complex 
environments: Recent findings from applied research. Current Directions in Psychological 
Science, 7(3), 83-87. 

Cao, X., Zevitas, C. D., Spengler, J. D., Coull, B., McNeely, E., Jones, B., ... & Allen, J. G. 
(2018). The on-board carbon dioxide concentrations and ventilation performance in 
passenger cabins of US domestic flights. Indoor and Built Environment, 28(6), 761-771. 



 
32 

Cao, X., MacNaughton, P., Cadet, L. R., Cedeno-Laurent, J. G., Flanigan, S., Vallarino, J., ... & 
Allen, J. G. (2019). Heart rate variability and performance of commercial airline pilots 
during flight simulations. International Journal of Environmental Research and Public 
Health, 16(2), 237. 

Carr, C. E. (2006). Impact of moderate elevations in CO2 on astronauts during long-duration 
spaceflight on the International Space Station. Final Report. 

Christoffersen, K., & Woods, D. D. (2003). Making sense of change: The challenges of events in 
operations environments. Cognitive Systems Engineering Laboratory, Ohio State University, 
30 pgs. 

Cohen, M. S., Freeman, J. T., & Wolf, S. (1996). Metacognition in time-stressed decision 
making: Recognizing, critiquing, and correcting. Human Factors, 38, 206-219. 

Cronyn PD, Watkins S, Alexander DJ. 2012. Chronic Exposure to Moderately Elevated CO2 
during Long-Duration Space Flight. NASA Technical Report NASA/TP-2012-217358. 
Available: http://ston.jsc.nasa.gov/collections/trs/_techrep/TP-2012-217358.pdf 

Daiker, R., Harrivel, A., Ghatas, R., Lake, R., & Maddock, S. (2020, July). Cognitive Task 
Analysis and Knowledge Elicitation to Inform Medical Workstation Requirements for Long 
Duration Space Missions. In International Conference on Applied Human Factors and 
Ergonomics (pp. 164-171). Springer, Cham. 

Davy, M., Desobry, F., Gretton, A., & Doncarli, C. (2006). An online support vector machine for 
abnormal events detection. Signal Processing, 86(8), 2009-2025. 

De Keyser, V., & Woods, D. D. (1990). Fixation errors: Failures to revise situation assessment in 
dynamic and risky systems. In A. G. Colombo & A. Saiz de Bustamante (Eds.), Systems 
reliability assessment (pp. 231–251). Dordrecht, Netherlands: Kluwer Academic Publishers. 

Endsley, M. R. (1995). Measurement of situation awareness in dynamic systems. Human 
Factors, 37(1), 65-84. 

Fenton, W. G., McGinnity, T. M., & Maguire, L. P. (2001). Fault diagnosis of electronic systems 
using intelligent techniques: A review. IEEE Transactions on Systems, Man, and 
Cybernetics, Part C (Applications and Reviews), 31(3), 269-281. 

Fischer, U., & Orasanu, J. (2000). Error-challenging strategies: Their role in preventing and 
correcting errors. Proceedings of the International Ergonomics Association 14th Triennial 
Congress and Human Factors and Ergonomics Society 44th Annual Meeting (pp. 1-30–1-33). 
Santa Monica, CA: Human Factors and Ergonomics Society 

Frank, J.; Spirkovska, L.; McCann, R.; Wang, L.; Pohlkamp, K.; and Morin, L. (2013). 
Autonomous Mission Operations. In Proceedings of the 2013 IEEE Aerospace Conference. 
Piscataway, NJ: Institute for Electrical and Electronics Engineers. 

Frank, J. D., McGuire, K., Moses, H. R., & Stephenson, J. (2016). Developing decision aids to 
enable human spaceflight autonomy. AI Magazine, 37(4), 46-54. 

Frank, J. D. (2019). Artificial Intelligence: Powering Human Exploration of the Moon and 
Mars. arXiv preprint arXiv:1910.03014. 

Freiberger, J. J., Derrick, B. J., Natoli, M. J., Akushevich, I., Schinazi, E. A., Parker, C., ... & 
Moon, R. E. (2016). Assessment of the interaction of hyperbaric N2, CO2, and O2 on 
psychomotor performance in divers. Journal of Applied Physiology, 121(4), 953-964. 



 
33 

Galbraith, D., & Baaijen, V. M. (2019). Aligning keystrokes with cognitive processes in writing. 
In Observing Writing (pp. 306-325). Brill. 

Getty, D. J., Swets, J. A., Pickett, R. M., & Gonthier, D. (1995). System operator response to 
warnings of danger: A laboratory investigation of the effects of the predictive value of a 
warning on human response time. Journal of Experimental Psychology: Applied, 1(1), 19. 

Gettys, C. F., Pliske, R. M., Manning, C., & Casey, J. T. (1987). An evaluation of human act 
generation performance. Organizational Behavior and Human Decision Processes, 39, 23–
51. 

Gill, M., Natoli, M. J., Vacchiano, C., MacLeod, D. B., Ikeda, K., Qin, M., ... & Vann, R. D. 
(2014). Effects of elevated oxygen and carbon dioxide partial pressures on respiratory 
function and cognitive performance. Journal of Applied Physiology, 117(4), 406-412. 

Greitzer, F. L. (2005). Toward the development of cognitive task difficulty metrics to support 
intelligence analysis research. In Fourth IEEE Conference on Cognitive Informatics, 
2005.(ICCI 2005). (pp. 315-320). IEEE. 

Hergeth, S., Lorenz, L., Vilimek, R., & Krems, J. F. (2016). Keep your scanners peeled: Gaze 
behavior as a measure of automation trust during highly automated driving. Human Factors, 
58(3), 509-519. 

Hilburn, B., Jorna, P. G. A. M., & Parasuraman, R. (1995). The effect of advanced ATC 
automation on mental workload and monitoring performance: An empirical investigation in 
Dutch airspace. In Proceedings of the 8th International Symposium on Aviation Psychology 
(pp. 387-391). Columbus: Ohio State University. 

Hilburn, B., Parasuraman, R.: & Mouloua, M. (1995). Effects of short- and long-cycle adaptive 
function allocation on performance of flight-related tasks. In N. Johnston, R. Fuller, & N. 
McDonald (Eds.), Aviation psychology: Training and selection (pp. 347-353). Hampshire, 
England: Ashgate 

Holden, K., Munson, B., Russi-Vigoya, N., Dempsey, D., Adelstein, B. (2019a). Human 
Capabilities Assessment for Autonomous Missions (HCAAM) Phase II: Development and 
Validation of an Autonomous Operations Task List. Final Report 

Hong, L., & Page, S. E. (2002). Groups of diverse problem solvers can outperform groups of 
high ability problem solvers. Proceedings of the National Academy of Science: Economic 
Sciences, 101, 16385–16389. 

Horvitz, E., & Barry, M. (1995). Display of information for time-critical decision making. In 
Proceedings of the Eleventh conference on Uncertainty in Artificial Intelligence (pp. 296-
305). Morgan Kaufmann Publishers Inc. 

Hwang, S. H., Park, W. M., Park, J. B., & Nam, T. (2017). Characteristics of PM10 and CO2 
concentrations on 100 underground subway station platforms in 2014 and 2015. Atmospheric 
Environment, 167, 143-149. 

Kajtár, L., & Herczeg, L. (2012). Influence of carbon-dioxide concentration on human well-
being and intensity of mental work. QJ Hung. Meteorol. Serv, 116, 145-169. 

Kemeny, J. G., et al. 1979, Report of the President's Commission on the Accident at Three Mile 
Island (Pergamon Press, New York). 



 
34 

Kirlik, A., Fisk, A. D., Walker, N., & Rothrock, L. (1998). Feedback augmentation and part-task 
practice in training dynamic decision-making skills. In J. A. Cannon-Bowers & E. Salas 
(Eds.), Making Decisions under Stress: Implications for Individual and Team training (p. 
91–113). 

Klein, G., Orasanu, J., Calderwood, R. & Zsambok, E.E. (Eds.). (1994). Decision Making in 
Action: Models and Methods. Ablex, Norwood, NJ. 

Klein, G. (2001). Features of team coordination. In M. McNeese, M. R. Endsley, & E. Salas 
(Eds.), New trends in cooperative activities: Understanding system dynamics in complex 
environments (pp. 68–95). Santa Monica, CA: Human Factors and Ergonomics Society. 

Klein, G., Phillips, J. K., Rall, E. L., & Peluso, D. A. (2007). A data–frame theory of 
sensemaking. In Expertise out of Context (pp. 118-160). Psychology Press. 

Knox, J. (2017, July). Development of Carbon Dioxide Removal Systems for NASA’s Deep 
Space Human Exploration Missions 2016-2017. 47th International Conference on 
Environmental Systems. 

Knox, J. (2018, July). Development of Carbon Dioxide Removal Systems for NASA’s Deep 
Space Human Exploration Missions 2017-2018. 48th International Conference on 
Environmental Systems. 

Krihak, M. (2016). Exploration medical capability: Medical data architecture technology 
development plan. NASA Document 7082. 

Landon, L. B., & O’Keefe, W. S. (2018). Team Training Is a Go: Team Training for Future 
Spaceflight', Building Intelligent Tutoring Systems for Teams (Research on Managing 
Groups and Teams, Volume 19). 

Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life. 
Cambridge University Press. 

Law, J., Van Baalen, M., Foy, M., Mason, S. S., Mendez, C., Wear, M. L., ... & Alexander, D. 
(2014). Relationship between carbon dioxide levels and reported headaches on the 
international space station. Journal of Occupational and Environmental Medicine, 56(5), 
477-483. 

Layman, L., Nikora, A. P., Meek, J., & Menzies, T. (2016, May). Topic modeling of NASA 
space system problem reports: research in practice. In Proceedings of the 13th International 
Conference on Mining Software Repositories (pp. 303-314). 

Layman, L., Zelkowitz, M., Basili, V., & Nikora, A. P. (2012, November). Toward Baselining 
Software Anomalies in NASA Missions. In 2012 IEEE 23rd International Symposium on 
Software Reliability Engineering Workshops (pp. 13-14). IEEE. 

Layton, C., Smith, P. J., & McCoy, C. E. (1994). Design of a cooperative problem-solving 
system for en-route flight planning: An empirical evaluation. Human Factors, 36, 94–119. 

Lee, Y. H., Beisert, S., Moreno, F., Rodriggs, M., & Eagles, D. (2013). Development and 
Execution of Autonomous Procedures Onboard the International Space Station to Support the 
Next Phase of Human Space Exploration. In AIAA SPACE 2013 Conference and 
Exposition (p. 5473). 

Lee, S. J., & Siau, K. (2001). A review of data mining techniques. Industrial Management & 
Data Systems, 101(1), 41-46. 



 
35 

Lindsey, T., Shetye, S., & Shaw, T. (2016). Exploration Clinical Decision Support System: 
Medical Data Architecture. Investigator’s Workshop abstract. 

Liu, W., Zhong, W., & Wargocki, P. (2017). Performance, acute health symptoms and 
physiological responses during exposure to high air temperature and carbon dioxide 
concentration. Building and Environment, 114, 96-105. 

Ma, R., & Kaber, D. B. (2007). Effects of in-vehicle navigation assistance and performance on 
driver trust and vehicle control. International Journal of Industrial Ergonomics, 37(8), 665-
673. 

Macatangay, A., Simon, C., Bautista, J., Moses, H., Morency, R., & Misek, W. (2018, July). 
Personal CO2 Monitor (PCO2M)-In-flight Evaluation of the 2x2015 Technology 
Demonstration. 48th International Conference on Environmental Systems. 

Manzey, D., & Lorenz, B. (1998). Effects of chronically elevated CO₂ on mental performance 
during 26 days of confinement. Aviation, Space, and Environmental Medicine, 69(5), 506–
514 

Mark, G. (2002). Extreme collaboration. Communications of the ACM, 45, 89–93. 
Marquez, J. J., Hillenius, S., Healy, M., & Silva-Martinez, J. (2019). Lessons Learned from 

International Space Station Crew Autonomous Scheduling Test. Final Report to HFBP. 
Marquez, J. J., Hillenius, S., Zheng, J., Deliz, I., Kanefsky, B., & Gale, J. (2019, November). 

Designing for Astronaut-Centric Planning and Scheduling Aids. In Proceedings of the 
Human Factors and Ergonomics Society Annual Meeting (Vol. 63, No. 1, pp. 468-469). Sage 
CA: Los Angeles, CA: SAGE Publications. 

Marquez, J. J., Miller, M. J., Cohen, T., Deliz, I., Lees, D. S., Zheng, J., ... & Hillenius, S. 
(2019). Future needs for science-driven geospatial and temporal extravehicular activity 
planning and execution. Astrobiology, 19(3), 440-461. 

Maula, H., Hongisto, V., Naatula, V., Haapakangas, A., & Koskela, H. (2017). The effect of low 
ventilation rate with elevated bioeffluent concentration on work performance, perceived 
indoor air quality, and health symptoms. Indoor Air, 27(6), 1141-1153. 

Mehrotra, S., Butts, C. T., Kalashnikov, D., Venkatasubramanian, N., Rao, R. R., Chockalingam, 
G., ... & Huyck, C. (2003, December). Project RESCUE: challenges in responding to the 
unexpected. In Internet Imaging V (Vol. 5304, pp. 179-192). International Society for Optics 
and Photonics. 

Meyer, C., & Schneider, W. (2018). NASA Advanced Explorations Systems: 2018 
Advancements in Life Support Systems. In 2018 AIAA SPACE and Astronautics Forum and 
Exposition (p. 5151). 

Molloy, R., & Parasuraman, R. (1996). Monitoring an automated system for a single failure: 
Vigilance and task complexity effects. Human Factors, 38(2), 311-322. 

Moray, N., Inagaki, T., & Itoh, M. (2000). Adaptive automation, trust, and self-confidence in 
fault management of time-critical tasks. Journal of Experimental Psychology: Applied, 6(1), 
44. 

Mudgett, P., Manney, J., Smith, M., Neal, S. J., & Pilgrim, J. (2018, July). US Navy Submarine 
Sea Trial of a NASA developed Multi-Gas Monitor. 48th International Conference on 
Environmental Systems. 



 
36 

Murray, C. and Cox, C. B. 1989, Apollo, The Race to the Moon (Simon & Schuster, New York). 
Myhrvold, A. N., Olsen, E., & Lauridsen, O. (1996). Indoor environment in schools–pupils 

health and performance in regard to CO2 concentrations. Indoor Air, 96(4), 369-371. 
Patterson, R. D. 1990, Auditory warning sounds in the work environment. Philosophical 

Transactions of the Royal Society of London, B 327, 485-492. 
Patterson, E. S., Roth, E. M., Woods, D. D., Chow, R., & Gomes, J. O. (2004). Handoff 

strategies in settings with high consequences for failure: lessons for health care operations. 
International journal for quality in health care, 16(2), 125-132. 

Patterson, E. S., Watts-Perotti, J., & Woods, D. D. (1999). Voice loops as coordination aids in 
space shuttle mission control. Computer Supported Cooperative Work (CSCW), 8(4), 353-
371. 

Patterson, E. S., Woods, D. D., Cook, R. I., & Render, M. L. (2007). Collaborative cross-
checking to enhance resilience. Cognition, Technology & Work, 9(3), 155-162. 

Parasuraman, R.. Molloy, R., & Singh, I. L. (1993). Performance consequences of automation-
induced "complacency." International Journal of Aviation Psychology, 3, 1-23. 

Parasuraman, R., Mouloua, M., Molloy, R., & Hilburn, B. (1996a). Monitoring of automated 
systems. In R. Parasuraman & M. Mouloua (Eds.), Automation and human performance: 
Theory and applications (pp. 91-115). Mahwah, NJ: Erlbaum 

Parasuraman, R., Mouloua, M., & Molloy, R. (1996b). Effects of adaptive task allocation on 
monitoring of automated systems. Human Factors, 38(4), 665-679. 

Parasuraman, R., & Wickens, C. D. (2008). Humans: Still vital after all these years of 
automation. Human Factors, 50(3), 511-520. 

Robertson, I. H., & O’Connell, R. (2010). Vigilant attention. In Attention and Time (Nobre, A & 
Coull, J., Eds), 79-88. 

Rader, S.; Reagan, M.; Janoiko, B.; and Johnson, J. (2013). Human-in-the-Loop Operations over 
Time Delay: NASA Analog Missions Lessons Learned. Paper Presented at the 43rd 
International Conference on Environmental Systems (ICES). Vail, CO, 14–18 July, p. 3520. 

Rice, S. A. (2014). Human health risk assessment of CO2: Survivors of acute high-level exposure 
and populations sensitive to prolonged low-level exposure. Environments, 3(5), 7-15. 

Satish, U., Mendell, M. J., Shekhar, K., Hotchi, T., Sullivan, D., Streufert, S., & Fisk, W. J. 
(2012). Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on 
human decision-making performance. Environmental Health Perspectives, 120(12), 1671-
1677. 

Sauer, J., Kao, C. S., & Wastell, D. (2012). A comparison of adaptive and adaptable automation 
under different levels of environmental stress. Ergonomics, 55(8), 840-853. 

Savulich, G., Hezemans, F. H., van Ghesel Grothe, S., Dafflon, J., Schulten, N., Brühl, A. B., ... 
& Robbins, T. W. (2019). Acute anxiety and autonomic arousal induced by CO 2 inhalation 
impairs prefrontal executive functions in healthy humans. Translational Psychiatry, 9(1), 1-
10. 



 
37 

Scully, R. R., Basner, M., Nasrini, J., Lam, C. W., Hermosillo, E., Gur, R. C., ... & Ryder, V. E. 
(2019). Effects of acute exposures to carbon dioxide on decision making and cognition in 
astronaut-like subjects. npj Microgravity, 5(1), 1-15. 

Shalin, V. L. (2005). The roles of humans and computers in distributed planning for dynamic 
domains. Cognition, Technology, & Work, 7, 198–211. 

Shattuck, L. G., & Woods, D. D. (2000). Communication of intent in military command and 
control systems. In The Human in Command (pp. 279-291). Springer, Boston, MA. 

Simon, H. A. (1996). Models of my life. MIT press. 
Singh. I. L., Molloy, R., & Parasuraman, R. (1993). Automation-induced "complacency": 

Development of the complacency-potential rating scale. International Journal of Aviation 
Psychology, 3, 111-121. 

Smith, P. J., Klopfenstein, M., Jezerinac, J., & Spencer, A. (2017). Distributed work in the 
National Airspace System: Providing feedback loops using the post-operations evaluation 
tool (POET). In Human Factors impacts in Air Traffic Management (pp. 147-168). 
Routledge. 

Smith, P. J., McCoy, E., & Layton, C. (1997). Brittleness in the design of cooperative problem-
solving systems: The effects on user performance. IEEE Transactions on Systems, Man and 
Cybernetics, 27, 360–371. 

Snow, S., Boyson, A. S., Paas, K. H., Gough, H., King, M. F., Barlow, J., & Noakes, C. J. 
(2019). Exploring the physiological, neurophysiological and cognitive performance effects of 
elevated carbon dioxide concentrations indoors. Building and Environment, 156, 243-252. 

Son, K. N., Richardson, T. M. J., & Cmarik, G. E. (2019). Equilibrium Adsorption Isotherms for 
H2O on Zeolite 13X. Journal of Chemical & Engineering Data, 64(3), 1063-1071. 

Stankovic, A., Alexander, D., Oman, C. M., & Schneiderman, J. (2016). A review of cognitive 
and behavioral effects of increased carbon dioxide exposure in humans. NASA Technical 
Paper, 2016-219277. 

Stark, J. M., Scerbo, M. W., Freeman, F. G., & Mikulka, P. J. (2000, July). Mental fatigue and 
workload: Effort allocation during multiple task performance. In Proceedings of the Human 
Factors and Ergonomics Society Annual Meeting (Vol. 44, No. 22, pp. 863-866). Sage CA: 
Los Angeles, CA: SAGE Publications. 

Stetson, H.; Frank, J.; Cornelius, R.; Haddock, A.; Wang, L.; and Garner, L. (2015). Amo 
Express: A Command and Control Experiment for Crew Autonomy. Paper presented at the 
Annual International Space Station Research and Development Conference, 7–9 July, 
Boston, MA. NASA Technical Report 20150016490, Washington DC. 

Strangman, G. E., Sipes, W., & Beven, G. (2014). Human cognitive performance in spaceflight 
and analogue environments. Aviation, Space, and Environmental Medicine, 85(10), 1033-
1048. 

Storm, W. F., & Giannetta, C. L. (1974). Effects of hypercapnia and bedrest on psychomotor 
performance. Aviation, Space, and Environmental Medicine, 45, 431-433. 

Stuster, J. W., Adolf, J. A., Byrne, V. E., & Greene, M. (2018). Human Exploration of Mars: 
Preliminary Lists of Crew Tasks. NASA/CR-2018-220043 



 
38 

Stuster, J. W., Adolf, J. A., Byrne, V. E., & Greene, M. (2019). Generalizable Skills and 
Knowledge for Exploration Missions. NASA/CR-2018-220445 

Subramaniam, S., Palpanas, T., Papadopoulos, D., Kalogeraki, V., & Gunopulos, D. (2006, 
September). Online outlier detection in sensor data using non-parametric models. In 
Proceedings of the 32nd international conference on Very large data bases (pp. 187-198). 
VLDB Endowment. 

Tan, S. C., Ting, K. M., & Liu, T. F. (2011, June). Fast anomaly detection for streaming data. In 
Twenty-Second International Joint Conference on Artificial Intelligence. Downloaded on 
January 19, 2020 from 
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI11/paper/viewFile/3229/3469. 

Thompson, J. F., Bellerjeau, C., Marinick, G., Osio-Norgaard, J., Evans, A., Carry, P., ... & 
Whiting, G. L. (2019). Intrinsic Thermal Desorption in a 3D Printed Multifunctional 
Composite CO2 Sorbent with Embedded Heating Capability. ACS applied Materials & 
Interfaces, 11(46), 43337-43343. 

U.S. Department of Labor, Occupational Safety and Health Administration. 2018. Available 
from https://www.osha.gov/laws-
regs/regulations/standardnumber/1910/1910.1000TABLEZ1. 

Vera, A. H., Holden, K. L., Dempsey, D. L., Russi-Vigoya, M. N., Wu, S. & Beutter, B. R. 
(2019). Contextual Inquiries and Interviews to Support Crew Autonomous Operations in 
Future Deep Space Missions: Preliminary Requirements and Proposed Future Research. 
Final Report to NASA. 

Vercruyssen, M. (2014, September). Breathing Carbon Dioxide (4% for 1-Hour) Slows 
Response Selection, Not Stimulus Encoding. In Proceedings of the Human Factors and 
Ergonomics Society Annual Meeting (Vol. 58, No. 1, pp. 914-918). Sage CA: Los Angeles, 
CA: SAGE Publications. 

Wald, G., Harper Jr, P. V., Goodman, H. C., & Krieger, H. P. (1942). Respiratory effects upon 
the visual threshold. The Journal of General Physiology, 25(6), 891-903. 

Wargocki, P., Porras-Salazar, J. A., Contreras-Espinoza, S., & Bahnfleth, W. (2020). The 
relationships between classroom air quality and children’s performance in school. Building 
and Environment, 173, 106749. 

Watts-Perotti, J., & Woods, D. D. (2007). How anomaly response is distributed across 
functionally distinct teams in space shuttle mission control. Journal of Cognitive Engineering 
and Decision Making, 1(4), 405-433. 

Weiss, G. M. (2004). Mining with rarity: A unifying framework. ACM Sigkdd Explorations 
Newsletter, 6(1), 7-19. 

Weitzman, D. O., Kinney, J. S., & Luria, S. M. (1969). Effect On Vision Of Repeated Exposure 
To Carbon Dioxide. SMRL Report No. 566. 

Wenzel, E. M. (2019). Human Factors Standard Measure Recommendations for Spaceflight, 
Analogs, and other Research Studies. Final Report to NASA. 

Wiegmann, D. A., Rich, A., & Zhang, H. (2001). Automated diagnostic aids: The effects of aid 
reliability on users' trust and reliance. Theoretical Issues in Ergonomics Science, 2(4), 352-
367. 



 
39 

Woods, D. D. (1993). Process tracing methods for the study of cognition outside of the 
experimental psychology laboratory. In G. A. Klein, J. Orasanu, & R. Calderwood (Eds.), 
Decision making in action: Models and methods (pp. 228–251). Norwood, NJ: Ablex. 

Woods, D. D. (1994). Cognitive demands and activities in dynamic fault management: 
Abductive reasoning and disturbance management. In N. Stanton (Ed.), Human factors in 
alarm design (pp. 63–92). Bristol, PA: Taylor & Francis. 

Woods, D. D. (2005). Creating foresight: Lessons for resilience from Columbia. In W. H. 
Starbuck & M. Farjoun (Eds.), Organization at the limit: NASA and the Columbia 
disaster(pp. 289–308). Malden MA: Blackwell. 

Woods, D. D., & Hollnagel, E. (2006). Joint cognitive systems: Patterns in cognitive systems 
engineering. Boca Raton, FL: Taylor & Francis. 

Woods, D. D., Johannesen, L. J., Cook, R. I., & Sarter, N. B. (1994). Behind human error: 
Cognitive systems, computers, and hindsight. Dayton, OH: Human Systems Integration 
Information and Analysis Center. 

Woods, D. D., O’Brien, J., & Hanes, L. F. (1987). Human factors challenges in process control: 
The case of nuclear power plants. In G. Salvendy (Ed.), Handbook of human 
factors/ergonomics (pp. 1724–1770). New York: Wiley. 

Woods, D. D., & Patterson, E. S. (2000). How unexpected events produce an escalation of 
cognitive and coordinative demands. In P. A. Hancock & P. Desmond (Eds.), Stress, 
workload and fatigue (pp. 290–302). Mahwah, NJ: Erlbaum. 

Wu, S. C., & Vera, A. H. (2019). Capability Considerations for Enhancing Safety on Long 
Duration Crewed Missions: Insights from a Technical Interchange Meeting on Autonomous 
Crew Operations. Downloaded on January 15, 2020 at 
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20190027727.pdf. 

Xu, Y., Sun, Y., Wan, J., Liu, X., & Song, Z. (2017). Industrial big data for fault diagnosis: 
Taxonomy, review, and applications. IEEE Access, 5, 17368-17380. 

Yang Y, Sun C, Sun M . (1997). The effect of moderately increased CO2 concentration on 
perception of coherent motion . Aviat Space Environ Med, 68, 187-91. 

Zaghloul, W., Lee, S. M., & Trimi, S. (2009). Text classification: Neural networks vs support 
vector machines. Industrial Management & Data Systems, 109, 708-717. 

Zhang, X., Wargocki, P., & Lian, Z. (2014). Literature survey on the effects of pure carbon 
dioxide on health, comfort and performance. Proceedings of Indoor Air, 2014, 13th. 

Zhang X, Wargocki P, Lian Z, et al. (2017a) Effects of exposure to carbon dioxide and 
bioeffluents on perceived air quality, self-assessed acute health symptoms, and cognitive 
performance. Indoor Air, 27, 47–64. 

Zhang, X., Wargocki, P., & Lian, Z. (2017b). Physiological responses during exposure to carbon 
dioxide and bioeffluents at levels typically occurring indoors. Indoor Air, 27, 65-77. 

Zimek, A., & Filzmoser, P. (2018). There and back again: Outlier detection between statistical 
reasoning and data mining algorithms. Wiley Interdisciplinary Reviews: Data Mining and 
Knowledge Discovery, 8(6), e1280. 

 
  



 
40 

Appendix A. Autonomous Task List 
 

 
 
 

GOAL: Maintain crew health
Tasks
1 Respond to medical/behavioral health events

a Respond to sudden cardiac arrest: Limited to BVM, chest compressions, AED, IO and epinephrine; treatment lasting < 45 mins.
b Use medical software along with vitals/test results to help diagnoseis condition of unconscious injured/ill crewmember.
c Respond to behavioral emergency: Treatment period is short (0-3 days) and well defined (acute, organic event).
d Respond to unexpected traumatic injury in the context of an interplanetary mission.

2 Maintain physical and psychological crew health and fitness
a Manage sleep, evaluating disorders as they arise.
b Coordinate exercise device availability among crew to ensure access to maintain cardiovascular conditioning, muscle strength, and bone density.
c Manage diet, including nutritional intake, food growth, and meal preparation.
d Maintain hygiene, e.g. during dental cleaning, or during waste management.
e Perform social and recreational activities during rest hours.

GOAL: Maintain vehicle/habitat 
Tasks
3 Respond to unanticipated major vehicle/habitat malfunctions

a Respond to hatch failure during docking.
b Respond to major fault of the cooling system.
c Respond to failure of autonomous software in the avionics system.
d Respond to major Electric Power Systems (EPS) failure.  

4 Perform installation/activation/inspection of vehicle/habitat systems
a Deploy supports/structures, manually, to configure dedicated area of spacecraft for medical procedure.
b Perform first-time or dormant activation of vehicle/habitat system.
c Anticipate known vehicle/habitat issues through inspection, or troubleshoot for unknown vehicle/habitat issues.

5 Manufacture hardware, software, and fuel 
a Connect flexible hose to fittings on the fuel production storage tanks and Mars Excursion Vehicle (MEV)/Mars Ascent Vehicle (MAV), manually to prepare 

for refueling.
b Activate pumps on fuel production system, manually to transfer fuel from storage tanks to Mars Excursion Vehicle (MEV)/Mars Ascent Vehicle (MAV).
c Manufacture replacement parts to repair oxygen generation equipment.

6 Modify, maintain, repair, and replace hardware, software, and procedures
a Monitor (i.e., measure and estimate) and predict vehicle system performance. 
b Enter control inputs, manually, to load software patch / reload software.
c Review documentation / enter control inputs, visually / manually, to diagnose software problem.

7 Perform nominal system commanding
a Reconfigure communication system for private calls.
b Manually configure habitat settings (i.e., temperature, light, etc).
c Adjust surface EVA suit controls, manually to operate mobile communications with Mars habitat personnel.

Study aim:
Identify the set of candidate autonomous mission tasks, focusing on those that are most likely to pose a threat to crew health and performance 
during an autonomous phase of a long-duration spaceflight mission.  Dark purple: time-critical tasks.  Light purple: complex tasks.  White: nominal tasks.  
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GOAL: Perform mission-related tasks
Tasks
8 Perform piloting/navigation task

a Operate propulsion controls to maneuver spacecraft for either near- or far-field rendezvous or docking.
b Adjust attitude control thrusters, manually, to dock Mars Excursion Vehicle (MEM)/Mars Ascent Vehicle (MAV) to spacecraft in Mars Orbit.
c Monitor system displays, visually, to assess proximity and verify docking with spacecraft in Mars Orbit.

9 Perform space or planetary EVAs
a Conduct surface EVA on unfamiliar terrain as part of a scientific mission.
b Descend gully while carrying hand tools and wearing surface EVA suit to conduct geological research.
c Conduct space EVA to repair failed equipment.

10 Perform planetary rover vehicle ops
a Deploy and attach battery cables to surface rover, manually while wearing surface EVA suit, to prepare for recharging rover batteries.
b Deploy surface rover vehicle, manually/visually while wearing surface EVA suit, to prepare for use.
c Navigate rover to a predetermined research site.

11 Perform robotics activities
a Deploy and operate robot, remotely during cruise phase, to inspect external features of spacecraft.
b Operate robot, remotely on surface, to assemble system elements to prepare field camp for humans. 
c Operate multiple robotic drones to survey geological sites of interest.

12 Perform science activities
a Conduct and record Mars observations using onboard equipment and telescopes.
b Conduct life science experiments involving crew members, manually using various instruments in the surface habitat, to generate data.
c Collect geological samples, manually using Apollo-type scoop (1m handle) and sample bags, while wearing surface EVA suit.

13 Perform scheduling, planning, and task allocation
a Monitor performance of work to ensure that opportunities and resources are allocated appropriately among crew personnel. 
b Modify schedules in response to changes in mission priorities.
c Balance workload among team members.

14 Perform in-mission training
a Conduct (training) simulation using spacecraft computer to refresh piloting skills for Mars Orbit Injection.
b Perform just in time training for an emergent task (no trained pre-mission).
c Conduct emergency refresher training for various possibilities (fire, micro-meteorite impact, hull breech, outgassing, ECLS failure, etc.).

15 Perform inventory and consumables management
a Remove personal garments from storage in preparation for changing clothes.
b Transfer food packages from deep storage to proximal storage, manually, to prepare galley for crew use.
c Record and plan nutritional intake.
d Manage pharmaceutical supplies.

Cross-cutting tasks (Task enablers)
A Coordination, leadership, and team work

a Coordinate simulator availability among crew to ensure refresher training for all required skills and functions.
b Schedule tasks and monitor performance of work to ensure that opportunities and resources are allocated appropriately among crew personnel. 
c Coordinate multi-teams towards a single objective.

B Communication
a Speak with other members of the crew accurately and concisely concerning technical and task-related topics.
b Communicate with team members proactively to enhance situation awareness among the team.
a Communicate on different modalities with Earth/MCC under different time delay regimes.

C Problem solving/decision making
a Define goals and acceptable performance.
b Integrate information from existing sources (i.e., hardware, software, human, and operational aspects).
c Trend monitoring / data analysis.
d Detect anomalies.
e Utilize lessons learned/historical data (e.g., Skylab, ISS lessons-learned documents).
f Determine candidate paths / solutions, workarounds / alternatives, and consequences / impacts.
g Validate solutions.
h Document resolutions, new data, and lessons learned.
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Appendix B. Historical Anomaly Identification during the Apollo Project 
 
The current practice of using a Mission Evaluation Team (MET) composed of engineering 
specialists to resolve anomalies started with the Mercury Project (Logsdon, 1999).3  Each 
specialist had a thorough understanding of system characteristics, operations, and limitations 
gained from experience with particular systems from initial design through development and 
testing of the hardware. According to the Apollo Experience Report: Flight Anomaly Resolution, 
Lobb (1975) describes the MET‘s sequence of tasks to identify an anomaly. Identification 
requires constant awareness of total system performance including telemetry data and air-ground 
voice communication of crew activities. System performance may be determined by comparing 
flight data with performance predictions (from ground tests or from other flights). Initial 
indications may not always be evident in real-time data, but rather requires detailed data 
processing. During Apollo 7, for example, the Command Module entry battery recharging 
characteristics were below predicted values, but available ground test data was insufficient to 
explain the anomaly. It was not until postflight tests that it was discovered that plate-divider 
materials used in the batteries could limit the recharge capacity of the battery in microgravity. 
 
Flight data may also limit anomaly identification. For example, during Apollo 15, a light on the 
entry monitor system panel was illuminated when it should not have been. The crew were 
provided with troubleshooting procedures to pinpoint the problem. Once the fault was isolated, a 
special procedure, written by the MET engineers, was used to resolve the anomaly. Post-flight 
tests revealed a free-floating strand of contaminating wire had created an intermittent short-
circuit. 
 
Anomalies during Apollo were also recognized by a specific component observably not 
functioning. An example comes from Apollo 12 when the color TV camera (on the lunar surface) 
lost its picture. Ground engineers observed that the astronaut had inadvertently damaged the 
image sensor by pointing the camera toward direct sunlight. 
 
Finally, crewmembers have identified anomalies. During Apollo 7 the command module primary 
floodlights failed. However, it wasn’t until postflight that an investigation revealed that the lights 
had been used indiscriminately in a dimmed mode before the flight and had simply burned out. If 
LEDs are run well below their rated current, their electrical efficiencies can be quite high. 
 
In conclusion, Apollo Project anomalies were identified from one of four sources: insufficient ground 
test data, insufficient flight data, obvious component failure and crew observation. The causes were 
typically of three types: manufacturing quality, hardware design and operational procedures. 
 
For crew to independently identify potential anomalies will require technology that provides 
constant awareness of total system performance including spacecraft, software and crew health 
data. Ideally, the software would monitor crew activities, compare flight data with performance 
predictions, know the time-criticality of the anomalous data, identify potential explanations for 
atypical performance, process data, prioritize the safety-criticality of the event,  and provide an 
appropriate caution, warning or alert to the crew. 

 
3 To better understand mission control front and back room coordination for Shuttle missions see 
Patterson et al., (1999), Jones (1995), Mark (2002) and Shalin (2005). 
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Artemis plans will involve a great deal of assembly work. Lessons learned from International 
Space Station assembly missions may shed some light into “unexpected” anomaly resolution. 
To resolve an anomaly after it has been identified has required a team-understanding of the 
underlying issue. Mission control organizational structure and culture ensures a rapid response. 
 
These teams have access to other specialists and facilities as required by the particular problem. 
 
  



 
44 

Appendix C. Lessons Learned from International Space Station (ISS) 
Assembly Missions 

 
Lessons learned are published for a wide range of ISS operational domains. This discussion will 
focus on anomaly resolution for the Mobile Servicing System (MSS) since a robotic system will 
likely be used to assemble Gateway and lunar outposts. The MSS is composed of two 
workstations, the Canadarm2 robotic arm, the mobile transporter and the mobile base system. 
The mobile transporter moves the arm and its base to different locations on the ISS truss 
structure. The entire system is integrated into the power, data and video infrastructure of the US 
segment of ISS. The Canadarm2 has 7 degrees of freedom, which Nancy Currie described as 
“tricky to use” particularly when she was manipulating it from a rotated relative position 
(personal communication, 2005). 
 
To assist the on-orbit crew and the ground team when faced with anomalies, Malfunction 
procedures (Mals) have been developed. Mals are designed to guide the operator through a series 
of troubleshooting, failure isolation, and recovery actions to determine the cause of the anomaly, 
safe the system, and reconfiguration into an operational state. As lessons were learned, the 
troubleshooting and failure isolation actions were minimized. 
 
Each computer unit of the MSS separately performs health monitoring. The results of these tests 
are fed into a central computer which performs health diagnostics on its own communication and 
power electronics. The central computer will Safe the system if any tests fail. Cat-1 failures can 
result in a hazardous condition, such as uncommanded motion or payload release. Each failed 
test has a corresponding caution and warning (C&W) text message that is displayed to crew and 
ground. In 1999, there were a total of 1400 caution and warnings. The crewmember would 
examine the C&W messages raised by the system and run the malfunction procedure 
corresponding to the highest priority code seen in the messages. These C&W must be cleared for 
operations to continue. The system would generate a Failure Detection, Isolation and Recovery 
worksheet, that was used by ground to develop Mals. 
 
It was initially assumed that Mals would be used by the crew without assistance from the ground. 
Once executed, operations could resume autonomously. However, about a year after the arm had 
been deployed, a condition occurred that produced a potential failure cause that had a similar 
caution and warning signature to a failure that had not been input into the on-board system.  The 
crew was directed to the wrong failed component which pointed them to the wrong Mal. 
Fortunately, the ground had been simultaneously performing troubleshooting and diagnostics and 
was communicating with the crew during anomaly resolution. This type of poor integrated 
behavior can sully crew trust in the system. This example holds a valuable lesson learned about 
problems that can arise when transitioning to a self-reliant crew. 
 
In conclusion, early MSS anomalies were plagued with inadequate and conflicting information 
supplied to crew and deficient recover actions. The causes were typically of two types: poor 
software/hardware integration and operational procedures. 
 
Three EMU’s were onboard ISS for an extended duration following the Columbia accident. All 
three units eventually experienced a cooling failure. The leading theory for the loss of cooling 
was that the water pump rotor within the Extravehicular Mobility Unit (EMU) cooling loop was 
jammed. The pump assembly is an intricate, precision device which up until this time had only 
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been serviced on the ground. On orbit maintenance procedures were developed and spare parts 
were launched on a Russian vehicle. In 2003, in a first of its kind on-orbit operation, the pump of 
EMU s/n 3013 was disassembled, cleaned and reassembled with a new rotor. The process went 
smoothly and cooling was successfully restored. 
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Appendix D. Additional Items that may Exacerbate the HSIA Risk 
 
D.1. Planetary Dust risks to HSIA 
There is a risk that lunar and planetary dust will exacerbate the HSIA risk. In 2008, a team of 
NASA scientists and engineers identified systems that will be affected by planetary dust 
(Wagner, 2008). Many of their concerns are summarized below. 

• Air revitalization systems including the following sub-components 
– Ventilation systems 
– Trace contaminant control 
– CO2 removal 
– CO2 reduction 
– O2 generation 
– Particulate control system 

• Water recovery system 
– Biological water processor 
– Water quality monitor 

• Waste collectors and disposal 
• Thermal 

– Radiators 
– Humidity control 

• Other life support systems, such as 
– Valves that seal surfaces 
– Moving parts such as pumps 
– Filters will be plugged 

• Airlock effects 
– Seal degradation causing leaks and requiring higher maintenance 
– Dust will transfer into habitat/vehicle 

• Space suit assembly 
– Outer garment degradation of materials and dust transfer to airlock-habitat 
– Bearings 
– Visor coatings including scratches and severe abrasions, loss of coatings 
– Lighting reduction from dust coating illumination source 

• Portable life support system power and communications 
– Charged dust particles could result in static shock to electronics 
– Dust in batteries can cause a power drain and possible short circuit 

• Advance food systems contamination 
– Storage, processing equipment and food preparation equipment 

 
In addition, the team identified that dust will affect subsystems critical to anomaly resolution 
such as power tools, wrenches, sockets, drills and joints. 
 
Engineering efforts to reduce contamination include designing with materials that are smooth 
and dust and abrasion resistant, or that could even reject dust—when possible, to reduce pockets 
and folds on the EMU that could trap dust and to incorporate dust covers for sensitive 
equipment. Anderson et al. (2018) stated that a best practice would be to include human factors 
experts throughout the design process. 
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It is critical that continuously active and automated cleaning systems be used to reduce crew time 
required for particulate management and removal (Asteroid, Lunar and Planetary Regolith 
Management: A Layered Engineering Defense, NASA/TP-2014-217399, identifies the 
technology capabilities needed). 
 
D.2. Re-directed Crewtime as a Risk to HSIA 
Time-critical anomaly resolution requires crewmember-hours (CM-h) or crewmember-days 
(CM-d). Crew survival requires that they eat, even during anomaly resolution. Food production, 
food product preparation, meal preparation and waste disposal require a large amount of 
crewtime (Anderson et al., 2018) and depends upon properties of the food, such as if it is based 
on a crop or how the food was packaged if it was a resupply. There is a risk that these survival 
tasks could interfere with anomaly response. 
 
 
 
 


