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auspices of the Agency Chief Information 
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archiving, and disseminates NASA’s STI. 
The NASA STI program provides access to 
the NTRS Registered and its public interface, 
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aeronautical and space science STI in the 
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technical findings by NASA-sponsored 
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technical conferences, symposia, 
seminars, or other meetings sponsored 
or co-sponsored by NASA. 
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NASA programs, projects, and missions, 
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English-language translations of foreign 
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pertinent to NASA’s mission. 
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specialized research announcements and 
feeds, providing information desk and 
personal search support, and enabling data 
exchange services. 
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Deep Space Human-Systems Research Recommendations for 
Future Human-Automation/Robotic Integration 

 
John Karasinski1, Sherrie Holder2, Stephen Robinson3, and Jessica Marquez4 

 
 
 

Appropriate integration between automation and robotics systems and their human 
operators is essential for future space exploration. The Human Factors and 
Behavioral Performance Element of NASA’s Human Research Program requires a 
systematic understanding of the critical human-automation/robotic (HAR) 
integration, or HARI, design challenges for future space exploration. This document 
reports the results of a systematic assessment of the spaceflight-relevant HARI 
technologies and research topics addressing critical gaps in spaceflight-relevant 
HARI knowledge, and prioritizes research required for successful human 
performance and HAR integration. We reviewed relevant literature across the past 
ten years and interviewed ten subject matter experts to investigate the current state of 
HARI technology, challenges facing development, the state of HARI research across 
a wide range of fields, and opportunities for advancing the state of the art through 
directed research. This information was used to identify relevant HARI technologies 
and research topics, as well as factors to assess relative priority of HARI 
technologies. We worked with NASA stakeholders to weight the factors relevant to 
assessing HARI specific technologies. A multi-dimensional trade analysis was 
performed to objectively score HARI research topics and specific technologies to 
recommended investment priorities for NASA. 

 
 
 
Executive Summary 
This investigation focused on a systematic assessment of current and upcoming human 
automation/robotic (HAR) integration, or HARI, technologies and research topics. Analysis was 
focused on research and technology that address critical gaps in spaceflight-relevant HARI 
knowledge, and prioritizing the research required for successful human performance and HAR 
integration. This is essential for NASA’s Human Factors and Behavioral Performance Element to 
understand the critical human-automation/robotic integration design challenges for future space 
exploration. A multi-dimensional trade analysis was performed to objectively score HARI research 
topics and specific technologies resulting in recommended research priorities for NASA investment. 
A series of factors informing overall return on investment potential were used in weighted analysis 
of each technology. Factors included characteristics such as TRL and applicability to relevant 

 
1 University of California, Davis. 
2 Space and Mission Critical Systems, The Charles Stark Draper Laboratory. 
3 University of California, Davis, Center for Spaceflight Research. 
4 NASA Ames Research Center, Moffett Field, California. 



 

 
2 

spaceflight tasks. While these factors for assessment pertained directly to HARI technologies, 
research topics were assessed through direct relationships with those technologies (Figure 1).  
 

 
 

Figure 1. Top-level trade study approach used in the HARI analysis. 
 
 
To understand the HARI trade space, we reviewed relevant literature across the past ten years and 
interviewed ten subject matter experts (SMEs) across industry and academia to investigate the current 
state of HARI technology, challenges facing development, upcoming automation/robotic technologies 
across a wide range of fields, and opportunities for advancing the state of the art through directed 
research. Based on the gathered information, we derived a list of HARI research topics essential to 
addressing HARI development challenges and advancing the state of the art, as well as a list of 
specific HARI technologies with application toward HAR tasks common to either long duration deep 
space exploration (orbital) missions, space surface exploration missions, or both. An initial set of 
factors for assessment of technologies was developed. These factors were characteristics of 
technologies that effect the potential impact of development on NASA missions, or overall return on 
research investment. Factors included HAR task applicability, task (capability) enabling, potential to 
reduce or introduce risk, and Technology Readiness Level (TRL), among others.  
 
Factors were provided to a group of NASA HARI stakeholders from NASA Ames Research Center 
and NASA Johnson Spaceflight Center. They were asked to review eight factors and rank them from 
most important to least important for consideration of HARI technology investment potential. NASA 
stakeholders were informed that these factors would be weighted and used to conduct a trade study 
designed to help NASA prioritize which technologies and, consequently, which HARI research 
topics, should be pursued in support of future long duration exploration missions. After gathering 
their input, the stakeholder’s scores of the factors were averaged and ranked. The final ranks were 
used in our trade analysis.  
 
A multi-dimensional trade analysis was performed to objectively assess HARI research topics and 
specific technologies. The factors for assessment were traded directly with HARI technologies, 
while research topics were assessed through direct relationships with those technologies. 
Technologies were first assessed against each factor in a series of individual one-dimensional trade 
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analyses (each trading technologies against one factor). The results of these factor-level trades were 
normalized and used to score technologies, taking into account the relative factor weights, in the 
factor-to-technology dimension of the larger analysis (Figure 1). The research-topic-to-technology 
dimension was assessed based on relationships between the two. Research topics and technologies 
were defined as related if a given technology supports the research topic such that its development 
would fundamentally drive investigation of that topic. The scores for each related technology for a 
given research topic were summed to achieve the total score for that topic. 
 
The top-ranking research topics were: (1) improving training for HAR systems and tasks; (2) 
establishing appropriate trust in automation/robotics systems; and (3) understanding human intent. 
The top-ranking technologies identified from the trade study were: (1) machine learning; (2) 
autonomous obstacle detection/imaging; (3) robotic/human information interfaces; and (4) 
artificial intelligence. These results reflect the surveyed background literature and the information 
gathered from our SMEs. These top-ranking research topics were driven by their associated highly 
scoring technologies, while the top-ranking technologies have seen enormous advancements in 
research interest and development over the past few years, and all offer a large benefit to the tasks 
required by NASA on future missions. The top-ranking technologies all benefited from high marks 
across all factors.  
 
Based on the trade analysis performed, it is recommended that NASA prioritize research investment 
in the topics of improving training for HAR systems and tasks, establishing appropriate trust in 
autonomous/robotic systems, and understanding human intent. These top-ranked research topics can 
be traced to trends of broad task applicability, high potential for risk reduction, low potential for risk 
reduction, and are areas whose study supports the advancement of research in lower-ranked topics as 
well. Investigation of these research topics will provide a fundamental foundation for addressing 
challenges that face implementation of HARI technology solutions in future exploration missions. 
 
 
1. Introduction 
Technological advancements in automation and robotics necessitate appropriate integration between 
these systems and their human operators. To date, there has not been a systematic evaluation of the 
HARI design challenges for human spaceflight critical to current and upcoming automation/robotic 
technologies. Industries like transportation, air traffic management, and defense are investing 
significant time and effort to investigate and solve the many design challenges involved in human-
automation/robotic integration. NASA’s Human Factors and Behavioral Performance Element needs 
to understand the critical human-automation/robotic integration design challenges for future space 
exploration. A survey of the upcoming research topics and technologies which can be applied to 
NASA from a range of industries and domains is needed in order to reduce the risks associated with 
human spaceflight.  
 
Therefore, an assessment of the upcoming technologies and open research challenges critical to 
effective HARI systems across industries and domains is essential to inform the design and 
development of safe, efficient future systems. The objective of the current project is to conduct a 
systematic assessment of the space-relevant HARI automation/robotic technologies in order to 
prioritize necessary research required for successful human performance and HAR integration. This 
includes identification of aspects that influence the relative importance of technology for spaceflight, 
or factors, for assessing prioritization of HARI related research and technologies.  
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2. Project Background 
The overall objective of this study was to investigate HARI technologies on the horizon with the 
potential to support critical HAR tasks and use trade analysis to assess these technologies against 
critical factors for investment in order to determine recommendations for research and development. 
The project was designed with two Phases, with Phase 1 focused on gathering background 
information and identification of specific technologies, and Phase 2 focused on trade analysis. Tasks 
were originally proposed for each Phase as shown in Table 1. This project largely followed the 
original two-phase plan, with background research informing the design of a trade study aimed to 
provide recommendations of technologies/research to pursue. However, specific tasks were 
redirected, in coordination with the HARI Discipline Scientist (DS) (NASA civil servant at NASA 
Ames Research Center), as we gathered the background information in Phase 1 and learned more 
about the trade space.  
 
In exploring HARI technologies and risks and challenges facing development, as described in the 
Phase 1 tasks, through literature review and interviews with SMEs, it became evident that 
technology implementations as described in Task 1.3 would vary widely due to dependence on 
specific mission design, even when constrained to a specific HAR task. It would not be possible or 
practical to capture the space of all possible specific technology implementations at such a detailed 
level. The primary goal of this project was to explore a trade space of HARI solutions or directions 
for research, not to trade on mission designs. Rather than explore a subset of implementations whose 
applicability to a HAR task would be limited mission to mission, we chose to raise the level of the 
technology/research trade space and explore broader solutions to HARI challenges as they apply to 
HAR tasks common to the scope of long duration orbital and planetary surface exploration missions. 
For example, exploring the potential of Augmented Reality/Virtual Reality (AR/VR) technology in 
general as applied to HAR tasks, as opposed to a specific implementation of AR/VR to train for 
surface operations that assumes a human-robot team makeup (a mission design decision).  
 
In reviewing a draft of the report described in Task 1.5, it became apparent that the HARI solutions 
identified fell into two categories (Table 1). While some were technologies which support or enable 
HAR tasks, others were research topics related to those technologies whose study will fundamentally 
drive future HARI capabilities and directly address HARI challenges. Given the importance of the 
research topics identified for addressing HARI risk, the trade analysis plan was directed to capture 
both technologies and research topics (and the relationship between them). Additionally, with each 
technology and research topic applicable to a range of HAR tasks as described above, rather than 
having a separate analysis for each task, HAR task became a critical factor for comparison across the 
trade space, providing a more complete evaluation between technologies. Although the process 
outlined in the Phase 2 tasks was followed, the focus of the trade analysis was shifted to reflect the 
nature of the trade space. This shift allowed the study to produce relevant recommendations on 
closing HARI risk as intended.   
 
  



 

 
5 

 

Table 1. Tasks Initially Proposed for Phases 1 and 2 of the 
HARI Trade Analysis 

Task Task Description 

Phase 1 

1.1 

Work with the Human Automation/Robotics Integration (HARI) Discipline 
Scientist (DS) (NASA Civil Servant at Ames) to understand the HAR tasks 
and the key mission architecture design constraints that will heavily influence 
future HAR system design. 

1.2 
Identify and consider current and near-term future (expected to be operational 
within the next 10 years) HAR classes of technologies and capabilities that 
are relevant to the required HAR tasks. 

1.3 
Identify possible technological implementations, i.e., automation and robotic 
systems, to accomplish these HAR tasks, taking into account the mission 
architecture design constraints in the Concept of Operations. 

1.4 Determine the associated HARI design and research challenges associated 
with each HAR technological solution. 

1.5 Coordinate with the HARI DS and develop a report describing the potential 
technologies and associated risks and challenges of each. 

Phase 2 

2.1 Develop draft criteria and associated weighting for the trade space evaluation 
of the suitability of each class of technology for each relevant mission task. 
Among potential decision criteria are: technology readiness, safety-criticality, 
crew-time savings, unique capability, and minimum frequency of interaction 
between the human and  automation/ robotic system. 

2.2 Work with the HARI DS and other NASA stakeholders to arrive at a 
consensus for criteria and relative weighting, by participating in a series of 
virtual meetings, an on-site workshop, or technical interchange meetings as 
organized and implemented by NASA and KBRwyle. 

2.3 Develop an analysis method for applying the DS-agreed upon criteria to 
evaluate each technology for each DRM task, be it computationally modeled, 
empirically data driven or based on subject-matter expertise. 

2.4 Complete the trade analysis using the selected analysis method and criteria, 
and develop recommendations for the most likely automation/ robotic 
implementations; identify the corresponding human integration design 
challenges associated with developing each HAR system. 

2.5 Develop and deliver a final report on the findings, which will include 
recommendations for each of the HAR tasks. 

 
 
3. Background Research 
To begin the assessment of space-relevant HARI critical factors, we first completed a 
comprehensive literature review of the field of human and automation/robotics interaction. 
Background literature primarily focused on survey papers from the past ten years, but also included 
prominent papers from noted authors in the field. Primary research was also gathered from 
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discussions with subject matter experts in human factors and human-robot interaction related fields. 
Findings and lessons learned from this investigation are provided in this report. 
 
3.1. Literature Review 
We completed a review of human factors and automation/robotics integration survey papers 
published over the past decade, with an increased focus on the past five years. Non-survey papers 
from highly cited and established experts were also added to this review to provide additional 
insights. When reading these papers, care was taken to note recurrent topics and technologies that 
received specific focus, were forecast to generate additional interest in the near future or were 
otherwise noted as requiring greater study. 
 
As a result of this literature review, major themes of in human and automation/robotic integration 
technology development and research were identified (Table 2). 
 

Table 2: Key Papers Reviewed and the Topics Discussed in Each 

 Machine 
Learning 

Flexible/ 
Adaptive/ 
Adaptable 

Automation 

Networked 
Multi-robot 

Systems, 
Swarms 

Trust 

Admoni and Scassellati, 2017 [1]    x 
Ahmad et al., 2017 [2] x x   

Chen and Barnes, 2014 [3] x x x  
Endsley 2017 [4] x x  x 

Guiochet et al., 2017 [5]    x 
Kehoe et al., 2015 [6] x  x  

Kolling et al., 2016 [7]  x x  
Liu and Wang, 2018 [8] x    

Losey et al., 2018 [9] x x  x 
Lu et al., 2016 [10]  x   

Ososky et al., 2013 [11]   x x 
Parasuraman and Wickens, 2008 [12]  x   

Phillips et al., 2016 [13]    x 
Rautaray and Agrawal, 2015 [14] x    

Schaefer et al., 2016 [15]    x 
Sheridan, 2016 [16] x   x 

Vagia et al., 2016 [17]  x   
Wang et al., 2018 [18] x  x  

Zamora et al., 2017 [19] x    
 
 
Each of these topics is briefly discussed below, referencing their fundamental papers when possible, 
as well as their forecasts from the previously reviewed articles. 
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3.1.1. Machine Learning 
Machine learning (ML) is among the most commonly mentioned topics which authors forecast as 
being essential to the future of human-robotic interaction [18]. Machine learning has enabled 
significant benefits in a variety of automation/robotics systems but has also given rise to the need for 
explainable systems and has raised additional questions about trust. While machine learning 
techniques may be effective, they are rarely easily explainable, and operators often have difficulty 
understanding exactly why a system behaves as it does. Additionally, as these systems have become 
more sophisticated, they have can now continuously learn and update their behavior, making it 
challenging for operators to maintain both system understanding and appropriate levels of trust [3].  
 
Machine learning techniques such as hidden Markov models, Gaussian mixture models, and radial 
basis function neural networks, though usually requiring a supervised training phase, have been 
shown to be very effective in predicting human intent in the context of physical human-robotic 
interaction [9]. In reviewing which machine learning algorithms are currently being used, Zamora et 
al. found that neural networks accounted for an overwhelming majority, but that both supervised and 
unsupervised algorithms were about equally common [19]. ML is essential to the fields of vision-
based hand gesture recognition and non-visual gesture recognition, without which gesture 
recognition devices would be impossible [8], [14], [20]. As computer technology continues to 
rapidly advance, the ability to detect, track, and classify gestures in real-time has enabled this 
technology to be implemented in manufacturing and other industrial plants. Liu et al. specifically 
note a need to combine different ML algorithms to improve efficiency, and that deep learning 
techniques are now enabling non-wearable sensors [8]. ML has also been used to vary the 
personality and behavior of adaptive social robots [2]. 
 
In her 2017 paper, Endsley noted the research needs for the next thirty years of designing and 
building fully autonomous systems [4]. Several of these specifically concern machine learning 
techniques, including validating autonomy software, learning system consistency and transparency. 
There are currently no effective techniques for validating autonomy software, as “traditional 
methods fail to address the complexities of learning systems. Exhaustive testing of rules and 
potential system states will not be possible and understanding boundary conditions will be difficult” 
[4]. Validating machine learning solutions is currently an active area of research. There is concern 
about consistency in learning systems, as different systems will learn using different techniques and 
provide different levels of feedback about how their automation has changed based off new data. 
Endsley notes the lack of transparency in learning systems as a unique challenge, saying “[t]he 
actual logic and lessons ‘learned’ by neural networks and deep learning software are typically 
opaque not only to the human operator but also to software developers who may not fully understand 
how the system will behave in all circumstances” [4]. These problems are exemplified by Sheridan, 
who notes that “[i]t is becoming clear that many complex traffic situations are exceedingly difficult 
for computer vision and artificial intelligence to ‘understand’ and that many accidents are avoided 
by  social interaction between drivers, such as mutual eye contact, hand signals, and so on. 
Understanding the social aspects of driving in traffic, as well as the degree to which cars can be 
safely automated, demands much further research” [16]. 
 
3.1.2. Flexible, Adaptive, or Adaptable Automation 
Flexible, adaptive, and adaptable automation are widely praised in the literature for their ability to 
provide dynamic levels of automation. The flexibility to provide different sets of automated features 
during different mission phases, for instance, is an effective requirement for many modern tasks. 
One example of this is the autopilot software used in modern transport aircraft, which includes 
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multiple modes of automation for takeoff, cruise, and landing. Chen and Barnes define flexible 
automation as “systems that invoke various levels of automation depending on the operator’s state, 
critical events in the environment, or algorithms related to specialized problem sets” [3]. Chen and 
Barnes and others have subdivided flexible automation into subtypes, based on the involvement of 
humans in the decision making process: adaptive automation—where tasks are assigned using 
conditions established before a mission, adjustable automation—where the human decides when to 
invoke automation, and mixed-initiative systems—where both the human and the system jointly 
decide how to allocate tasks [3], [21]. These dynamic changes in the role of the human in the 
human-automation interaction are meant to “either increase the robot’s level of autonomy at the 
expense of the human’s authority, or, conversely, increase the human’s control over the shared 
cooperative activity at the expense of the robot’s autonomy” [9]. These systems help maintain 
overall performance while attempting to reduce workload and maintain situational awareness for 
their human operators [22].  
 
Among these three automation technology areas, adaptive automation has seen the most research, 
and many authors have used it in empirical studies [17]. The primary difficulty with adaptive 
automation lies in “thorny human factors issue of [function] allocation...which has been met with 
marginal success” [17]. Optimal assignment of tasks between the operator and the system is difficult 
as it requires excellent understanding of the performance of the operator and the system’s response 
to the operator. It also requires the operator to be fully aware of the functional allocation at all times, 
otherwise mode confusion may occur. 
 
Flexible automation can react to dynamic changes in the environment, and researchers have been 
able to include real-time sensor data of human physiological states to bring the operator’s workload 
and situational awareness into the loop. Monitoring the human allows the system to automatically 
take over tasks when workload is high, and has been used to send control back to the human when 
the system notes that they have become complacent or as an attempt to increase situational 
awareness [10]. This type of automation is already present in self-driving vehicles on the road 
today—self-driving vehicles require that drivers have their hands on the wheel even when in self-
driving/lane-keeping modes. While this flexible automation is often effective in common and well 
understood systems such as driving, there is some concern that flexible automation may prove 
detrimental in complex and potentially unpredictable systems such as robotic swarms [7]. 
 
While adaptive and adaptable automation has been the subject of many experiments over the past 
few decades, the question of who should be in charge of setting the level of automation remains an 
open question in need of further study, though mixed-initiative systems may provide the best of both 
worlds [3], [12]. Chen and Barnes conclude their review by noting that “[m]ixed-initiative 
architectures take advantage of the synergy between the more sophisticated worldview of an 
experienced human as well as the agent’s logical precision and more rapid latencies” [3]. This 
architecture is inherently complex and difficult to study, however, as individual differences such as 
age, expertise, and trust have large effects when interacting with these systems [15]. Further research 
is recommended into different types of flexible automation, especially when dealing with very 
complex systems. 
 
3.1.3. Networked Multi-robot Systems and Swarms 
Human automation/robotics interaction has traditionally focused on a single robotic system, but the 
miniaturization of computer technology has made swarm or multi-robot systems an increasingly 
viable option. The ability for swarms to dynamically reconfigure themselves in response to changing 
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environmental variables and task demands, however, can lead to complex requirements on the 
human operator. There remain important questions to be answered in the realm of human systems 
integration with swarms, especially regarding human supervisory control [7]. There is a specific 
concern with monitoring human workload and situational awareness as the number of robots 
increases. Depending on the number and ability of robots and the type of tasks being performed, it is 
possible to quickly overburden the swarm operator, especially when operator is required to negotiate 
swarm-swarm interactions. Kolling et al.’s 2016 review breaks the cognitive complexity of the 
human-robot system into three complexities: robots performing independent activities, with 
complexity O(n), which allows more robots to be controlled simply by adding more operators in a 
linear manner; robots interacting with other robots fully autonomously, with complexity O(1), which 
allows for a fixed number of robots to control any number of robots; and the case where robot-robot 
interaction must be controlled by an operator, with complexity O(>n), as the dependencies between 
robots results in more demand faster than the number of robots grows [7]. See Figure 2 for a 
graphical illustration of control complexity under each of these conditions. 
 

 
 

Figure 2. Graphical illustration of the concept of control complexity in a human-
multirobot system [7]. 

 
 
Ongoing research into human-swarm interaction and multi-robot systems has primarily focused on 
coordinated swarm control, changing swarm topology, and describing the state of the swarm in a 
more understandable way [18]. The development and design of human-swarm interfaces for multi-
robot collaboration and, particularly, unmanned aerial vehicle teams is another important set of 
ongoing research. The ability for swarms to multitask, and the requirement for the human operator to 
quickly task switch have been shown to cause detrimental effects on overall system performance [3]. 
High workload phases have been shown to be most sensitive to interruptions from tasks switching, 
suggesting that task switching should be avoided during these phases unless absolutely necessary 
[23]. Issues relating to multitasking, task switching, and the loss of situational awareness can be 
mitigated with properly designed human-swarm interfaces. Chen and Barnes outlined several of the 
prominent issues in user interface design and offered solutions in the form of guidelines [3]. They 
identified six issues ranging from “maintaining operator’s ultimate decision authority” to 
“visualization and training techniques enhance human-agent collaboration”, and presented 
guidelines based on the findings of their review. 
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The concept of robots and automation systems that rely on externally networked support has also 
been explored by researchers [6]. New topics of research using “the cloud” or otherwise networked 
robotics include big data, cloud computing, collective robot learning, and human computation 
(Figure 3). Other key technologies which can be enhanced with networked robotic systems include 
human-robot collaboration technology, autonomous navigation technology under non-structured 
environments, multi-agent robot systems (swarms), and emotion recognition [18]. Issues associated 
with the rise in cloud technology include the need for techniques to consider time varying latency 
and quality of service, system security from remote intrusion, privacy concerns, and big data 
cleaning and filtering techniques. Currently, cloud computing can be described as a framework with 
consists of three levels: Infrastructure as a Service (IaaS), where bare operating systems are 
available; Platform as a Service (PaaS), where more structure is provided, including access to 
application frameworks, databases, and programming languages; and Software as a Service (SaaS), 
where software is made available online rather than as a local service [6]. 
 

 
 

Figure 3. Combining Robotics, Internet of Things, and Cloud Computing has resulted 
in many new possibilities such as Cloud Robotic [24]. 

 
 
3.1.4. Trust 
Human trust has numerous definitions but for our purposes can be considered to be “the attitude that 
an agent will help achieve an individual’s goals in a situation characterized by uncertainty and 
vulnerability” [25]. Trust has become an increasing topic of research as robotics increasingly moves 
out of traditional settings such as manufacturing and into more common-place locations such as the 
office and the home. Trust has a large impact on the physical safety of people operating around 
robots, as improper trust can lead a person to inadvertently place themselves in harm’s way. 
Schaefer et al. define trust as a three-dimensional expression of a relational property: 

1. An individual’s overall, long-term propensity to trust in general. 
2. A transient, momentary trust response to immediate ambient conditions. 
3. How #1 and #2 evolve over time. 
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Their meta-analysis found strong effects between human-robot interaction and analyzed the factors 
that determine trust [15]. A robot or robotic system’s ability to garner trust relies on several factors. 
See Figure 4 for Schaefer et al.’s conceptual organization of influencing the development of trust. 
Trust is commonly assessed using surveys which attempt to measure the individual factors that 
establish trust. These scales attempt to measure individual elements of trust, asking about the 
operator’s assessment of the automation’s competence, predictability, and dependability, among 
other factors. Of these measurement techniques, two of the most commonly used scales are the 
“Checklist for Trust between People and Automation” [26] and versions of Muir and Moray’s 
subjective rating scales [27], though research into real-time techniques is ongoing [28]. Appropriate 
trust is important when shared control between human-robot teams is essential, as the human is more 
likely to arbitrate additional tasks to the robot when this trust is established [9]. 
 

 
 

Figure 4. A conceptual organization of trust influences highlighting trust 
development [15]. 

 
 
Ososky et al. made several propositions regarding human trust of robotics, including: 

• Humans are easily influenced by superficial characteristics of robots. 
• Human subjective assessment of trust in robots ultimately determines the use of 

robotic systems. 
 
They noted that robot characteristics had the strongest influence on trust in human-robot teams, 
which included factors such as reliability, transparency, and anthropomorphic qualities [11]. One 
example of this is de Visser et al.’s 2016 study, which found that anthropomorphic automation 
associated greater trust resilience [29]. de Visser et al. concluded their study by suggesting that 
designers incorporate these features into future robots as a deliberate design choice to garner greater 
trust. Even very simple additions such as high levels of mutual gaze have been shown to increase 
trust, while gaze aversions stoke feelings of distrust between human-robotic teams [1]. 
 
While anthropomorphism can lead to greater trust, some authors note caution when incorporating 
these features. Culley and Madhaven warn that individual differences can lead some individuals to 
place too great a trust in anthropomorphic robots [30]. Individuals are even more likely to trust 
anthropomorphic robots if they perceive similarities to the robot and themselves regarding age, 
gender, and even similarity of movement [31], [32]. Ososky further warns that trust in a robot’s 
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reliability alone is insufficient for better teamwork, and that over-trust combined with an inaccurate 
or incomplete mental model can lead to worse overall performance. This is especially important 
when considering changing levels of automation in the field of human-automation interaction, for 
example, as an operator may not fully understand what they are currently responsible for, if the 
robotic system is in control. This has led to numerous incidents leading to serious injury and death. 
Trust in human-robot teaming is slightly different than trust in automation, however, as robots are 
often seen as collaborating teammates rather than just an automated tool [11]. 
 
3.2. Interviews with Subject Matter Experts 
In order to provide a current assessment of the critical challenges associated with effective HARI 
systems across industries and domains, we also interviewed SMEs. SMEs were chosen to represent a 
cross section of HARI related disciplines such as aerospace, industrial robotics, military 
applications, medical, and autonomous vehicles. SMEs were intentionally selected from different 
backgrounds, including military research, academia, and industry (robotics, medical, aerospace), in 
order to provide broad perspectives on the risks and challenges facing HARI technology, 
development, research. We conducted ten phone interviews with SMEs who integrate humans, 
automation, and robotics in their work. These interviews generally took between twenty and forty 
minutes. We asked each expert the following questions: 

1. What technologies do you think are on the horizon in your field in the integration 
of humans, automation, and robotics? 

2. How would you prioritize what technologies are in development involving the 
integration of humans, automation, and robotics? 

a. What technologies would be the most responsive to increased research support? 
b. For these technologies, what are the current TRLs? How much effort do you 

think it will take to raise the TRL over time? 
3. What are you most concerned about for the integration of humans, automation, and 

robotics? What technologies do you think could mitigate these risks? 
a. What risks do you see arising from inclusion of these technologies (what new 

risks do you anticipate)? 
b. What risks currently have no technology solutions? 

4. How will these technologies fill the gaps in our current abilities? 
a. Where do you see additional automation as a plausible way to fill those gaps? 
b. What other technology gaps should we be concerned about? 

5. Based on this discussion, is there anything else we should know? 
 
Based on the information gathered from literature and discussion with subject matter experts, the 
following specific HARI-related technologies and research topics emerged as areas for future 
research and development for the advancement of human automation and robotic interaction relevant 
to human spaceflight. 
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3.2.1. Specific Technologies 
3.2.1.1. Non-invasive Behavioral and Physiological Sensing 
Non-invasive behavioral and physiological sensing includes a range of techniques. Some 
physiological sensing techniques include common place, if controversial, methods such as a 
polygraph, to electromyography (EMG), electroencephalogram (EEG), and electrocardiogram 
(EKG) sensing. Behavioral analysis techniques may rely extensively on video analysis, such as gait 
analysis, and more integrated technology covering additional modalities. This technology can be 
used to infer team member states. The use of artificial intelligence to combine these perceptions is 
relatively developed. 
 
3.2.1.2. Implantable Biometrics 
Compared to many of the other specific technologies we identified, implantable biometrics is a 
relatively young field which focuses on implantable biosensors for precision and personalized 
medicine. These sensors can provide continuous data on specific, targeted metrics which can allow 
for the immediate detection of problems or need for intervention. Implantable biometrics is 
especially important in the “diagnosis, monitoring, management and treatment of a variety of disease 
conditions” and can be used to detect changes in a person’s health [33]. Further advances in 
miniaturization and nanotechnology are likely needed for this technology to become viable. 
 
3.2.1.3. Autonomous Obstacle Detection/imaging 
Autonomous obstacle detection/imaging is a combination of technologies designed to identify 
obstacles around a robot or other autonomous agent. Detection and imaging can make use of visual 
spectrum or other light sources, acoustic or magnetic sensors, or laser-based technologies such as 
Light Detection and Ranging (LIDAR). Multiple techniques also take advantage of combining these 
technologies into multispectral sensors. These technologies are important for autonomous docking 
and landing of spacecraft but have also seen an enormous increase in interest from the self-driving 
car industry. One important side effect of increased demand of this technology in self-driving cars in 
the past few years is that the hardware has both rapidly miniaturized and dropped in price. Note that 
this technology is only concerned with detection, while resulting actions and path planning is 
captured elsewhere (autonomous path planning). 
 
3.2.1.4. Autonomous Path Planning 
In contrast to autonomous obstacle detection, autonomous path planning describes the resultant 
planning and action that is taken after an obstacle is sensed or an objective is determined. This 
technology benefits greatly from a good understanding of the robot or autonomous agent’s 
dynamics, the environment it acts in, other agents in the environment, and the objective’s location. 
With regards to spaceflight, autonomous path planning is relevant when considering orbital 
proximity operations (including rendezvous and docking), surface landings, and rover movements. 
This technology has also seen great benefits from the self-driving car industry, especially regarding 
planning around other moving agents whose intent is often poorly understood. 
 
3.2.1.5. Speech Recognition 
Speech recognition is a set of technologies that enable the translation of spoken words to text by 
computer software. Speech recognition has been actively developed since the 1970s and has a 
generally high rate of success. Despite this relatively long period of development, recent 
advancements in speech recognition have been made by integrating machine learning techniques. 
Transforming spoken word to text allows autonomous systems and robots to accept commands or 
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infer human intent and is a common alternative to physical computer interfaces [34]. It also allows 
for the detection of speech patterns and inflection classification to capture intent, trust, fatigue, or 
emotional states. 
 
3.2.1.6. Intuitive Control Interfaces 
Intuitive control interfaces consider ways of intuitively mapping human gestures to a resultant 
robotic action, and often takes human physiology, kinematics, and other elements of physical 
movement into consideration. This technology includes interface types such as joysticks, keyboards, 
touchscreens, and gesture recognition, among others. 
 
3.2.1.7. Robotic/human Information Interfaces 
Information displays must determine what information to transmit for any given task, which may be 
customized based on user preference, task or environment concerns, past experiences, or the 
presence of anomalies. These may include multimodal (visual, audio, and/or haptic) displays which 
display task relevant information to an operator. They may display 2D or higher-dimensional 
information and may be body-worn or mounted in the environment. These displays have elements 
designed by both human-computer interaction experts and machine learning algorithms. Ideally, 
such displays would be ubiquitous, capable of quickly and easily transferring information between 
stations, and able to appear on traditional monitors, tablets, smartphones, or augmented reality 
interfaces. While some elements are well-defined and arguably in use today, others remain in early 
stages of development. 
 
3.2.1.8. Augmented Reality and Virtual Reality 
Augmented and virtual reality are a pair of technologies which provide a partial or fully virtual 
environment to a user, often in the form of a head mounted display. Augmented reality has also been 
developed to work with modern phones and tablets, and can provide additional, digital context to an 
otherwise physical object or environment. Virtual reality is increasingly used as a training tool, 
while augmented reality has begun to be used as a tool for both training and operations. 
 
3.2.1.9. Robotic Agents  
This technology encompasses a large variety of robots, which include rovers, satellite or unmanned 
aerial vehichle (UAV) swarms, robotic arms, and vehicles, among others. The relative TRL varies 
between relatively low, in the case of robotic swarms, to very high, in the case of rovers and robotic 
arms. These sets of technologies enable humans to complete tasks that they could not otherwise 
accomplish, either because they take place in an extreme, dangerous or difficult to reach 
environment (as is the case with Martian rovers), they require abilities humans do not (moving 
payloads required by robotic arms such as Canadarm2) or because they would take too long (such as 
the mapping or scouting of a region by a swarm of UAVs or satellites). 
 
3.2.1.10. Assistive Robotics 
In contrast to robotic agents, which largely replace the human or do not require a human to be 
present, assistive robotics describe robots that directly interface with humans to assist them in 
accomplishing a task. These robots include small assistive satellites such as Astrobee, a modern 
version of the Apollo Lunar Roving Vehicle with more advanced guidance capabilities, 
exoskeletons, or personal assistants. These robots enhance the already existing abilities of humans 
by enabling them to complete tasks that they otherwise could not, or by increasing performance in 
challenging tasks. 
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3.2.1.11. Artificial Intelligence 
Artificial intelligence (AI) is intelligence demonstrated by machines, in contrast to human 
intelligence. Some of the major goals of AI include knowledge reasoning, planning, natural language 
processing, computer vision, robotics, and machine learning. In space HARI, AI could primarily be 
leveraged in managing complex systems (i.e. diagnostics, prognostics, and maintenance of 
spacecraft) and in acting as assistants for crew completing science and activity tasks. By correctly 
interpreting human intent, AI can also control robots for payload and physical crew assistance. 
 
3.2.1.12. Machine Learning  
Machine learning describes a collection of algorithms which perform a specific task without using 
explicit instructions, instead relying on learned models. Common types of machine learning include 
supervised learning, in which a human trains the model, unsupervised learning, where the system 
learns on its own, and reinforcement learning, where the software takes actions in an environment to 
optimize a cost function. Machine learning has improved the performance of many varied 
technologies and is the foundation upon which artificial intelligence is being developed. 
 
3.2.1.13. Flexible, Adaptive, or Adaptable Automation  
As noted earlier in the report, flexible, adaptive, and adaptable automation are widely praised in the 
literature for their ability to provide dynamic levels of automation. The flexibility to provide 
different sets of automated features during different mission phases, for instance, is an effective 
requirement for many modern tasks. Chen and Barnes define flexible automation as “systems that 
invoke various levels of automation depending on the operator’s state, critical events in the 
environment, or algorithms related to specialized problem sets” [3]. 
 
3.2.2 Research Topics 
3.2.2.1. Understanding Human Intent 
The topic of understanding human intent is wide, and includes subtopics such as the robotic 
interpretation of human intent, understanding human intent unobtrusively, and improving human to 
robot communication. The interpretation of human intent by a computer or robot can be done in a 
variety of ways, including speech, gestures, and other forms of nonverbal communication. These 
techniques are at varied levels of development, from basic proof of concept to use in operations. 
Each technique can be broken down into several levels—gestures, for example, have four levels: 
sensor technologies, identification, tracking and classification [8]. This area is also closely tied to 
interpreting behavioral and human monitoring data and encompasses human/behavioral model 
research such as the prediction of intent from eye movements [35], [36]. 
 
3.2.2.2. Autonomous/robotic System Communication to Humans 
In contrast to the previous topic (understanding human intent) the research topic of 
autonomous/robotic system communication to humans addresses how these complex systems can 
best relay information back to a human operator. This topic includes both research of 
communication techniques and mitigation of miscommunications from the system to the human. 
This topic deals with discovering effective methods of providing information to a human user in an 
intuitive way, such that communication feels natural to a human operator. Human-robot 
communication is largely focused on developing multisensory methods to successfully communicate 
a robot’s intent to humans. Human-autonomous system communications additionally deals with 
methods to successfully enable explainable and transparent autonomous system operation.  
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3.2.2.3. Ensuring Human Safety (Physical) 
This topic captures research which investigates how to enable safe human and robot operation in a 
shared environment in order to reduce risk. It specifically investigates methods to successfully 
prevent harm to humans in close physical proximity with robots and develops guidelines and 
recommendations as to how physical interaction between robots and astronauts can safely occur. 
This research topic benefits from the lessons learned in manufacturing settings, where humans and 
robots must often work nearby or directly with each other, as well as that work done by autonomous 
car companies in avoiding pedestrians. 
 
3.2.2.4. Continuous Human Performance Monitoring 
The topic of continuous human performance monitoring seeks to understand human-system 
performance and measure human performance unobtrusively. This research topic investigates which 
human-system performance measures and limits are required for spaceflight and seeks to validate 
novel methods and technologies for measuring a variety of aspects of human performance such as 
task performance, workload, and situational awareness. Research in this area also focuses on 
understanding the human performance effects resulting from adaptive automation and attempts to 
identify what are the performance differences between adaptable (human sets level of automation) 
versus adaptive (automation sets level of automation). 
 
3.2.2.5. HAR Team Performance Optimization and Function Allocation 
Human autonomous/robotics team performance optimization and function allocation investigates 
different ways of understanding human-robot teamwork and human-autonomous system robustness, 
decides whether a particular function will be accomplished by a person, technology (hardware or 
software) or some mix of person and technology [33], and how to optimize that balance [37]. This 
research focuses on what social and teamwork elements enable successful human-robot 
collaboration, especially when it requires direct interaction between robots and astronauts. This area 
also captures research on how to measure robustness when humans are using system in off-nominal 
conditions and indentifies when these systems are off nominal. 
 
3.2.2.6. Enabling Command/control of Complex Robotic Systems 
This topic focuses on enabling command/control of complex robotic systems and enabling critical 
decision making. This includes research on methods to successfully allow humans to command and 
control multiple, mixed robotic agents with varying levels of autonomy and flexible function 
allocation. It also looks at new methods to enable humans to make time-critical decisions using 
autonomous systems across a variety of system dynamics and is required to evaluate methods for 
different autonomous systems with different functions (e.g., environmental control and life support 
system [ECLSS] vs. Power vs. Navigation). 
 
3.2.2.7. Improving Situation Awareness in HAR Systems 
“Situation awareness is the perception of the elements in the environment within a volume of time 
and space, the comprehension of their meaning, and the projection of their status in the near future” 
[38]. This research topic focuses on techniques to both maintain and improve operator situation 
awareness when interacting with automation/robotics systems. Recent work by Endsley has further 
expanded early models of situation awareness, discussing the emerging problem of loss of operator 
situational awareness and out-of-the-loop performance problems associated with increasing system 
autonomy, reliability, and robustness [4]. This new model for human-autonomy system oversight 
(HASO), incorporates situation awareness, trust, workload and automation interfaces among the key 
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system design features influencing human cognitive processes involved in successful interaction 
with automated systems.  
 
3.2.2.8. Improving Training for HAR Systems and Tasks 
The topic of improving training for HAR systems and tasks investigates what new methods are 
required or most effective to train humans to use complex, advanced autonomous and robotic 
systems. Research in this area explores different techniques and technologies to improve human 
performance and reduce workload, and often makes extensive use of mockups, simulations, hands-
on walkthroughs, and human-in-the-loop studies. Many techniques have been explored to improve 
training, including many kinds of feedback, manual control adaptation, and the use of virtual and 
augmented reality. 
 
3.2.2.9. Establishing Appropriate Trust in Automation/robotics Systems  
This research topic focuses on techniques to establish appropriate trust in automation/robotics 
systems and to mitigate changes in trust between humans and these systems. It explores how trust 
changes with factors such as communication, reliability, workload, social acceptability, privacy, and 
transparency. As noted earlier, it can be challenging for operators to establish appropriate trust as 
these automation/robotics systems become more sophisticated [3]. This research has also focused on 
shared control between human-robot teams and how tasks are arbitrated to the robot when trust is 
established [9]. Trust research investigates when there is a difference between expected and 
executed actions, and requirements on systems depending on whether knowledge is collected and 
maintained by software or by human operator. 
 
 
4. Trade Analysis 
In addition to specific technologies and research topics, the information gathered from the literature 
review and the discussions with subject matter experts was used to identify factors relevant to the 
assessment of technology or research for future investment. With all of this information gathered, 
the factors were refined and used in a multi-dimensional trade study to assess the technologies and 
research topics as priorities for HARI investment.  
 
4.1. Factor Assessment with NASA Stakeholders 
In addition to interviewing the human, automation, and robotics integration SMEs, we also surveyed 
six NASA HARI stakeholders for their input on the trade study. As NASA stakeholders involved in 
human, automation, and robotic interaction, we asked them to review eight factors and rank them 
from most important to least important in consideration of HARI technology for investment. We also 
had them rank additional “secondary criteria” for the factors related to risk. 
 
Factors are characteristics of a technology that our team, in collaboration the NASA HARI DS, has 
identified and selected because they are relevant to assessing HARI. These factors were generated 
from our review of the background literature and conversations with the SMEs. NASA stakeholders 
were informed that these factors would be weighted and used to conduct a trade study designed to 
help NASA in prioritizing which technologies and, consequently, which HARI research areas, 
should be further invested in to help with future long duration exploration missions. After our NASA 
stakeholders provided their input, we averaged and ranked their assessment of the factors. The 
ranked factors appear in Table 3. 
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Table 3. The Ranking of Seven Factors Resulting from 
Feedback from our NASA Stakeholders 

Factor Weight 
Task applicability  6 
Task enabling  6 
Potential for reducing risk  5 
Potential for introducing risk  (-)4 
External Investment (outside of NASA)  3 
Technology Readiness Level (TRL)  2 
Research Interest (within NASA)  1 

 
 
4.1.1. Task Applicability 
Which tasks does the technology have an impact on? This factor characterizes how much impact the 
technology may have on the various HARI tasks identified for future exploration missions [39]. We 
determined the application of the various technologies to each task in order to measure their 
respective applicability to space HARI. These tasks, common to long duration orbital missions, deep 
space surface exploration missions, or both, are shown in Table 4.  
 

Table 4. HAR Tasks for Spaceflight 

Applicable to orbit 
operations 

Maneuver/reboost/rendezvous 
Docking/undocking 
Spacecraft support, system maintenance 
Complex assembly, capture and berth 
Science and assigned activity support, payload assistance 
Science and assigned activity support, crew assistance–physical 
Science and assigned activity support, crew assistance–cognitive 

Applicable to surface 
operations 

Spacecraft support, system maintenance 
Spacecraft support, system preparation 
Site preparation assembly, excavation 
Complex assembly, heavy lift 
Drive/navigate 
Exploration, scouting 
Exploration, mapping 
Exploration, sampling/analyzing 
Science and assigned activity support, science/sample collection 
Science and assigned activity support, payload assistance 
Science and assigned activity support, crew assistance–physical 
Science and assigned activity support, crew assistance–cognitive 
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4.1.2. Task Enabling 
Does the technology enable a new capability? This factor describes how much the technology 
enables one or more of the various HARI tasks identified for future exploration missions. HARI 
tasks are assumed to be critical and must be completed. We subjectively rated this by classifying the 
technology as: No effect relative to current technology (score of 0); Improves performance of 
current capability (score of 1); or Adds new capability (score of 2). 
 
4.1.3. Potential for Reducing Risk 
What is the benefit from risk reduction? This factor describes how risk might be reduced by the 
inclusion of the technology. Each type of risk was subjectively rated. Types of risks (secondary 
criteria) are listed below: 

• Improved safety: increase astronauts’ safety. 
• Reduced likelihood of system failure: increase overall robustness of system by 

predicting or preventing failures. 
• Improved performance: astronauts can work more effectively and efficiently, 

including reducing physical and cognitive workload. 
 
4.1.4. Potential for Introducing Risk 
What is the cost from introduced risk? This factor describes how risk might be introduced by the 
inclusion of the technology. Each type of risk was subjectively rated. Types of risks are paired with 
the types of risk reduction. Note that, unlike all the other factors, a higher potential for introducing 
risk has a negative impact on the technologies overall score. 
 
4.1.5. External Investment (outside NASA) 
What is the current research activity going on outside of NASA? This factor characterizes how much 
research and investment has recently and is currently going into the development of the technology 
by entities outside of NASA. This is overall research on the technology excluding HARI research 
investments. We measured this using the publication rate associated with each technology. The name 
of each technology was searched for on 6/24/2019 on Web of Science using the following search, 
where technology is substituted for each: 

• ALL FIELDS: (technology) 
• Timespan: 2013-2018. Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, 

BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC. 
 
Similarly, the each technologies was also searched for in Google Scholar on the same date and with 
the same time span. The sums from both searches were used to determine scores for this factor (see 
Trade Study Approach). 
 
4.1.6. Technology Readiness Level (TRL) 
What is the current TRL? This factor characterizes the maturity level of the technology. We 
estimated the technology’s current TRL using information gathered from the literature and provided 
by our SMEs. TRL was split into three categories: Below TRL 3, TRL 3-5, and TRL 6 or greater. 
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4.1.7. Research Interest (within NASA) 
What is the current research interest within NASA? This factor describes if the technology has any 
potential for infusion into NASA missions as determined by the NASA Technology 
roadmaps/NASA Strategic Technology Investment Plan. We qualify this by checking if the 
technology is present on the NASA technology roadmap. 
 
4.2. Trade Study Approach 
A multi-dimensional trade analysis was performed to objectively score HARI research topics and 
specific technologies in a recommended order of priority for NASA investment. The approach used 
was similar to a Relationship Matrix Decomposition Scheme (RMDS) [40]; see Figure 5. The factors 
for assessment described above pertain directly to HARI technologies, while research topics are 
assessed through direct relationships with those technologies (Figure 5a). This parallels the RMDS 
approach of tracing assessment of system configurations and technology options based on 
objectives/goals through functional options (Figure 5b). For the complete trade table used in this 
study, see Appendix A: Trade Analysis Tables. 
 

(a)  (b)  
 

Figure 5. (a) Top-level trade study approach used in the HARI analysis; (b) structure 
of the RMDS trade study approach 

 
 
Research topics and technologies were defined as related if a given technology supports the research 
topic such that its development would fundamentally drive investigation of that topic. Each 
technology was given a score resulting from the technology-factors dimension of the trade. The 
scores for each related technology for a given research topic were summed to achieve the total score 
for that topic. 
 
The technology total scores represent a roll-up of individual weighted factor scores for each specific 
technology. At a factor level, normalized scores for each technology were determined in a series of 
one-dimensional factor-technology trade studies. These individual factor-level trades used to 
compile the factor-technology dimension are found in Appendix A: Trade Analysis Tables. The 
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factor scores were multiplied by the factor weights as defined in the NASA Stakeholders section of 
this report and summed for each technology.  
 
4.2.1. Factor-level Trades 
The factor-level trades for Risk Reduced, Risk Introduced, and TRL each assessed the specific 
technologies against three weighted options. Risk Reduced, for example assigned an individual score 
of 0 or 1 to each technology if it potentially reduced risk to crew, risk to mission/vehicle, or risk of 
loss of performance. Each potentially reduced risk was weighted (1 to 3) based on relative ranking as 
found by the NASA stakeholders. The total weighted scores for each technology (sum of weights x 
scores) were normalized by the highest possible score for a single technology to find the factor 
scores on a scale between 0 and 1 (see Equation 1, below). 
 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑆𝑐𝑜𝑟𝑒	 = 	
𝛴(𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑆𝑐𝑜𝑟𝑒𝑠	𝑓𝑜𝑟	𝑎	𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦)
𝛴(𝑤𝑒𝑖𝑔ℎ𝑡𝑠) ∗ 𝑚𝑎𝑥(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙	𝑠𝑐𝑜𝑟𝑒)

																													(1) 

 
For Risk Introduced, normalized scores were multiplied by -1, as introduced risk were tallied as a 
negative contribution to overall technology assessment. The TRL trade was performed identically to 
Reduced Risk, with the exception that technologies could only be assigned to a single average TRL 
range. Assessment for Research Interest (within NASA) was simplified compared to other factor-
level trades as scoring had a single binary level (trade table included in Appendix A: Trade Analysis 
Tables for completeness). 
 
In the Task Applicability and Task Enabling factor-level trades, scores were assigned between 
technology and task, with equal weighting across tasks (all assigned a weight of 1). Technologies 
were assessed for Task Applicability with a score of 0 or 1, while for Task Enabling technologies 
were assigned a score for each task of 0, 1, or 2 as described in the NASA Stakeholders section. 
 
In assessment of External Investment in NASA, as described previously, two search engines were 
used to find estimates on the number of recent publications pertaining to each technology. Searches 
with each service are known to poll databases of drastically different size. The relative database size 
used by both search engines was accounted for by applying a weight determined by the largest 
publication total found for each service. In this way, the relative publication totals for each service 
could be normalized independently prior to summing the results of the two searches. 
 
 
5. Results 
5.1. Research Topics 
The final scores for research topics have been ranked, such that a high score represents a 
recommended higher priority for research investment by NASA (Table 5). The top-ranking 
research topics are: 

1. Improving training for HAR systems and tasks. 
2. Establishing appropriate trust in automation/robotics systems. 
3. Understanding human intent. 
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Table 5. The Resulting Prioritization of Research Topics from Linking  
Research Topics to the Upcoming Technologies 

Research Topic Score Rank 

Improving training for HAR systems and tasks 84.66 1 
Establishing appropriate trust in automation/robotics systems 79.27 2 
Understanding human intent 77.13 3 
Enabling command/control of complex robotic systems 72.80 4 
HAR team performance optimization and function allocation 68.76 5 
Autonomous/robotic system communication to humans 58.82 6 
Ensuring human safety (physical) 50.66 7 
Improving situation awareness in HAR systems 50.07 8 
Continuous human performance monitoring 44.68 9 

 
 
Note that all these topics were identified as areas applicable to HARI concerns, regardless of the 
score. A high score here is highly dependent on the impact of the surveyed technologies on the 
research topic and suggests which research topics should be able to make relatively quick progress 
given the technology that is being developed now and in the next 5–10 years. A low score reflects 
research topics that either have relatively few technology solutions on the horizon, had relatively low 
factor scores for the technologies that are related to the topic, or both. 
 
These top-ranking research topics were driven by their associated highly scoring technologies. 
Improving training for HAR systems and tasks touches on a variety of upcoming technologies 
ranging from machine learning to robotic/human information interfaces. These technologies ranked 
highly in their task applicability and potential for reducing risk and had relatively little potential for 
introducing new risks when compared to other technologies. By leveraging these upcoming 
technologies, researchers have ample opportunities to investigate novel techniques for improving 
training for these systems. These upcoming techniques will prove invaluable as HAR systems and 
tasks continue to increase in complexity, especially if, for example, they can provide crew with just-
in-time training for critical tasks when they are far from the support provided by mission control. 
The topic of training came up many times in our conversations with subject matter experts, who 
often noted case examples of major failures in their explanations for why this training was needed. 
Similarly, many subject matter experts also mentioned the need for establishing appropriate trust in 
automation/robotics systems during our interviews, a topic which came up repeatedly in our review 
of the literature. Over-trust and under-trust in these complex systems were both noted as being 
dangerous and can result from inadequate training. Research in trust has often focused on its role in 
flexible, adaptive, and adaptable automation, where operators can be unclear which mode the system 
is in. By taking advantage of upcoming technologies in intuitive physical control and robotic/human 
information interfaces, researchers can help to bring humans into the loop on what is happening 
within these complex systems. 
 
In contrast to the top-ranking research topics, continuous human performance monitoring and 
improving situation awareness in HAR systems were among the lowest ranked topics. While both 
are important when considering future long duration exploration missions, neither were directly 
associated with many upcoming technologies. Despite being associated with the top-ranking 
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technology, machine learning, continuous human performance monitoring ranked lowest. This is 
primarily because it was also associated with the two lowest ranking technologies, non-invasive 
behavioral and physiological sensing and implantable biometrics. Despite these technologies’ clear 
relation to performance monitoring, they were among the lowest ranking when considering the task 
applicability and task enabling factors, which were considered the most important by our NASA 
stakeholders. Improving situation awareness in HAR systems lower score came as a surprise as 
situation awareness presents a challenge across all HAR applications. 
 
5.2. Technologies 
The resulting ranks of the technologies from the weighted factors are shown in Table 6. The top-
ranking technologies identified from the trade study are:  

1. Machine Learning 
2. Autonomous obstacle detection/imaging 
3. Robotic/human information interfaces 
4. Artificial Intelligence 

 

Table 6. The Resulting Prioritization of Technologies using the Trade Study 

Technology Score Rank 

Machine Learning 19.33 01 
Autonomous obstacle detection/imaging 16.37 02 
Robotic/human information interfaces 15.86 03 
Artificial Intelligence 15.25 04 
Intuitive physical control interfaces 13.98 05 
Autonomous path planning 12.36 06 
Augmented Reality and Virtual Reality 12.29 07 
Robotic agents 12.25 08 
Flexible, Adaptive, or Adaptable Automation 12.24 09 
Assistive Robotics 09.69 10 
Speech recognition 08.78 11 
Non-invasive behavioral and physiological sensing 08.12 12 
Implantable Biometrics 04.98 13 

 
 
These top-ranking technologies have seen enormous advancements in research interest and 
development over the past few years, and all offer a large benefit to the tasks required by NASA on 
future LDEMs. In contrast to the top-ranking technologies, low ranking technologies show a trend of 
reflecting a combination of low research interest, task relevance, or TRL. 
 
The top-ranking technologies all benefited from high marks across all our factors. Machine learning, 
our top-ranking technology, particularly stands out due to scoring highest in the External Investment 
(outside of NASA) factor, where it significantly outperformed the other technologies. As we noted 
in the literature review, machine learning came has been repeatedly forecast as being essential to the 



 

 
24 

future of human-robotic interaction [18]. It also came up extensively in our conversations with our 
subject matter experts, though several of these also stressed caution in assuming machine learning 
could solve any problem without issue. Artificial Intelligence was also mentioned by most of the 
SMEs but ranked lower due to its dramatically higher potential for introducing risk. 
 
Autonomous obstacle detection/imaging was our second highest scoring factor but had little impact 
on our research topic recommendations. Despite being a well-established technology, the only topic 
it was ultimately related to was ensuring human safety (physical). Like our other high scoring 
technologies, however, it scored well due to its high task applicability, task enabling potential for 
reducing risk factors. This suggests that, while the technology should continue to be developed and 
refined, there is minimal applicability toward ongoing research that addresses outstanding HARI 
risks and challenges. Improvements resulting from refinement in the commercial sector, especially 
regarding autonomous cars, should enable faster and safer algorithms in the future. 
 
Several technologies were highly clustered in the middle of our rankings: autonomous path planning, 
augmented reality/virtual reality, robotic agents, and flexible/adaptive/adaptable automation also 
scored within a few tenths of a point from each other. These technologies all had relatively high 
potential for introducing risk but were otherwise highly applicable to the tasks related to space 
HARI. As noted previously, the two lowest ranking technologies, non-invasive behavioral and 
physiological sensing and implantable biometrics were among the lowest ranking when considering 
the task applicability and task enabling factors, which were considered the most important by our 
NASA stakeholders. These technologies were also those which did not score in the Research Interest 
(within NASA) factor, as they were not present in the NASA Technology roadmaps or NASA 
Strategic Technology Investment Plan. The third lowest ranking technology, speech recognition, 
despite being a widespread and high TRL technology, scored poorly because it was the lowest 
scoring in both the task applicability and task enabling factors. 
 
 
6. Contribution (Relation to NASA HARI Gaps) 
NASA has identified four gaps in HARI knowledge, as part of the larger Human Factors and 
Behavioral Performance (HFBP) characterization of human factors risks and associated knowledge 
gaps [41]. These gaps need to be closed in order to mitigate HARI related risk as it pertains to 
spaceflight. The NASA HARI Gaps are: 

• HARI-01: We need to evaluate, develop, and validate methods and guidelines for 
identifying human-automation/robot task information needs, function allocation, 
and team composition for future long duration, long distance space missions. 

• HARI-02: We need to develop design guidelines for effective human-automation-
robotic systems in operational environments that may include distributed, non-
collocated adaptive mixed-agent teams with variable transmission latencies. 

• HARI-03: We do not know how to quantify overall human-automation-robotic 
system performance to inform and evaluate system designs to ensure safe and 
efficient space mission operations. 

• HARI-04: We need to identify and scope the critical human-automation/robotic 
mission activities and tasks that are required for future long duration, long distance 
space missions. 
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This study extends prior investigation of HARI tasks, specifically to address gap HARI-04 directly. 
This investigation and trade study identify prioritized lists of specific technologies whose 
advancement support the activities and tasks required for future space exploration missions, as well 
as research topics where investment will support both HARI task capabilities and closing of the 
other three HARI knowledge gaps. All the research topics identified in this report can assist with 
closing HARI-02, and most address HARI-03 as well. Table 7 provides a complete mapping of the 
relationships between research topics and HARI gaps. Although few of the research topics address 
HARI-01, the outstanding concerns identified by NASA for closing HARI-01 pertain directly to the 
topics of safety and function allocation, which are reflected here.  
 

Table 7. Mapping of HARI-related Research Topics to HARI Gaps Identified by NASA 

Research Topic Gap 
HARI-01 

Gap 
HARI-02 

Gap 
HARI-03 

Understanding human intent ✓ ✓ ✓ 
Autonomous/robotic system communication to humans  ✓ ✓ 
Ensuring human safety (physical) ✓ ✓ ✓ 
Continuous human performance monitoring  ✓ ✓ 
HAR team performance optimization and function 
allocation ✓ ✓ ✓ 

Enabling command/control of complex robotic systems  ✓  
Improving situation awareness in HAR systems  ✓ ✓ 
Improving training for HAR systems and tasks  ✓  
Establishing appropriate trust in automation/robotics 
systems  ✓ ✓ 

 
 
7. Recommendations 
Based on the trade analysis performed, we recommend that NASA’s HFBP Element prioritizes 
research investment in the topics of improving training for HAR systems and tasks, establishing 
appropriate trust in autonomous/robotic systems, and understanding human intent. It is important 
to note that all the identified HARI research topics have application toward mitigating HARI risk 
in spaceflight tasks for future missions. These topics, however, represent the highest-priority areas 
for investment. 
 
Investigation and identification of methods to improve training for HAR systems has the potential 
for far-reaching impact on reducing risk in mission operations, with limited chance of introducing 
new risk. Training is also a ubiquitous concern across all HAR systems and tasks. Similarly, 
establishing trust between the human and robotic/autonomous system showed trends of tracing to 
high risk reduction potential, though risk introduction potential was more varied. Trust between the 
human and the autonomous system (or robotic agent) came up again and again in discussions with 
experts across different HARI related disciplines as critical to the success of HAR operations. 
Without appropriate trust, elements fundamental to other research topics, such as teamwork or 
performance, break down. 
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While understanding human intent ranked highly as a research topic largely because of the number 
of technologies to which it was related, we believe this topic deserves its place in the prioritized 
rankings because, like training and establishment of trust, it stands out in overall potential to address 
HAR concerns for spaceflight. The ability to interpret human communication, input, need, and 
general intent is critical to the successful operation of any HAR system which interacts directly with 
a human user. Consequently, it is strongly tied to several of the other research topics defined (e.g. 
continuous human performance monitoring, enabling command/control of complex robotic systems) 
and investment in this area could bolster study in those lower-priority topics as well.  
 
One of the primary outcomes from this research was to determine directions for HARI research that 
will close HARI risk and support capabilities for HAR tasks in space exploration. Investigation of 
these research topics will provide a fundamental foundation for addressing challenges that face 
implementation of HARI technology solutions. Improvement of training, trust, and human intent 
interpretation in HAR systems enables capability for a wide range of HAR space exploration tasks, 
both for long duration orbital missions and future planetary surface exploration. 
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Appendix A. Trade Analysis Tables 
 

Table A1. Top-level trade table with final research topic scores (top right), final technology scores 
based on factors (bottom) and weighted factor-level scores for each technology. 

 

 
 
  

1 1 1 1 1 1 1 77.13 3

1 1 1 1 1 58.82 6

1 1 1 1 50.66 7
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1 1 1 1 1 1 72.80 4

1 1 1 1 50.07 8

1 1 1 1 1 1 84.66 1

1 1 1 1 1 1 79.27 2

Te
ch

no
lo

gy

Factors Weight
Task applicability 6 2.84 2.53 5.37 5.37 1.26 3.79 6.00 4.74 5.05 3.79 6.00 6.00 4.42

Task enabling 6 1.26 1.11 3.63 2.84 0.95 2.84 3.16 2.37 3.79 2.84 3.95 3.00 3.32

Potential for reducing risk 5 3.33 3.33 5.00 5.00 3.33 5.00 5.00 5.00 5.00 3.33 5.00 5.00 5.00

Potential for introducing risk 4 -0.67 -2.67 -0.67 -4.00 -0.67 -0.67 -0.67 -2.67 -4.00 -2.67 -4.00 -0.67 -4.00

External Investment (outside of NASA) 3 0.02 0.01 0.04 0.15 0.91 0.02 0.03 0.51 0.07 0.05 1.97 3.00 0.51

Technology Readiness Level (TRL) 2 1.33 0.67 2.00 2.00 2.00 2.00 1.33 1.33 1.33 1.33 1.33 2.00 2.00

Research Interest (within NASA) 1 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Score: 8.12 4.98 16.37 12.36 8.78 13.98 15.86 12.29 12.25 9.69 15.25 19.33 12.24
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Table A2. Technology to Task Applicability factor-level trade table. 
 

 
 
  

Task Applicability

Te
ch
no
lo
gy

Weight
Robotic Operations, Orbit Maneuver/reboost/rendezvous 1 0 0 1 1 0 1 1 1 0 0 1 1 0

Docking/undocking 1 0 0 1 1 0 1 1 1 1 0 1 1 0
Spacecraft support, system maintenance 1 1 1 1 1 0 0 1 1 1 1 1 1 1
Complex assembly, capture and berth 1 0 0 1 1 0 1 1 1 1 0 1 1 0
Science and assigned activity support, payload assistance 1 1 1 1 1 0 1 1 1 1 1 1 1 1
Science and assigned activity support, crew assistance–physical 1 1 1 1 1 0 1 1 1 1 1 1 1 1
Science and assigned activity support, crew assistance–cognitive 1 1 1 0 0 1 0 1 1 0 1 1 1 1

Robotic Operations, Surface Spacecraft support, system maintenance 1 0 0 1 1 0 0 1 0 1 1 1 1 1
Spacecraft support, system preparation 1 0 0 1 1 0 0 1 0 1 0 1 1 1
Site preparation assembly, excavation 1 0 0 1 1 0 1 1 0 1 1 1 1 0
Complex assembly, heavy lift 1 0 0 1 1 0 1 1 0 1 1 1 1 0
Drive/navigate 1 1 0 1 1 1 1 1 1 1 1 1 1 1
Exploration, scouting 1 0 0 1 1 0 1 1 1 1 0 1 1 1
Exploration, mapping 1 0 0 1 1 0 0 1 1 1 0 1 1 1
Exploration, sampling/analyzing 1 0 0 1 0 0 0 1 1 1 0 1 1 1
Science and assigned activity support, science/sample collection 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Science and assigned activity support, payload assistance 1 1 1 1 1 0 1 1 1 1 1 1 1 1
Science and assigned activity support, crew assistance–physical 1 1 1 1 1 0 1 1 1 1 1 1 1 1
Science and assigned activity support, crew assistance–cognitive 1 1 1 0 1 1 0 1 1 0 1 1 1 1

Total Weighted Score: 9 8 17 17 4 12 19 15 16 12 19 19 14
Normalized Score: 0.47 0.42 0.89 0.89 0.21 0.63 1 0.79 0.84 0.63 1 1 0.74
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Table A3: Technology to Task Enabling factor-level trade table. 
 

 
 
 
 
 
 

Table A4: Technology to Risk Reduced factor-level trade table. 
 

 
 
  

Task Enabling

Te
ch
no
lo
gy

Weight
Robotic Operations, Orbit Maneuver/reboost/rendezvous 1 0 0 1 1 0 1 1 1 0 0 1 1 0

Docking/undocking 1 0 0 1 1 0 1 1 1 1 0 1 1 0
Spacecraft support, system maintenance 1 1 1 1 1 0 0 1 1 2 1 1 1 1
Complex assembly, capture and berth 1 0 0 1 1 0 1 1 1 1 0 1 1 0
Science and assigned activity support, payload assistance 1 1 1 2 1 0 2 1 1 2 2 2 1 2
Science and assigned activity support, crew assistance–physical 1 1 1 2 1 0 2 1 1 1 2 2 1 2
Science and assigned activity support, crew assistance–cognitive 1 1 1 0 0 2 0 2 1 0 2 2 1 2

Robotic Operations, Surface Spacecraft support, system maintenance 1 0 0 1 1 0 0 1 0 2 1 1 1 1
Spacecraft support, system preparation 1 0 0 1 1 0 0 1 0 2 0 1 1 1
Site preparation assembly, excavation 1 0 0 2 2 0 2 1 0 2 1 1 1 0
Complex assembly, heavy lift 1 0 0 1 1 0 1 1 0 1 1 1 1 0
Drive/navigate 1 1 0 2 1 1 2 1 1 1 1 1 1 1
Exploration, scouting 1 0 0 1 1 0 1 1 1 1 0 1 1 1
Exploration, mapping 1 0 0 1 1 0 0 1 1 2 0 1 1 1
Exploration, sampling/analyzing 1 0 0 1 0 0 0 1 1 1 0 1 1 1
Science and assigned activity support, science/sample collection 1 0 0 1 1 1 1 1 1 1 1 1 1 2
Science and assigned activity support, payload assistance 1 1 1 2 1 0 2 1 1 2 2 2 1 2
Science and assigned activity support, crew assistance–physical 1 1 1 2 1 0 2 1 1 2 2 2 1 2
Science and assigned activity support, crew assistance–cognitive 1 1 1 0 1 2 0 1 1 0 2 2 1 2

Total Weighted Score: 8 7 23 18 6 18 20 15 24 18 25 19 21
Normalized Score: 0.21 0.18 0.61 0.47 0.16 0.47 0.53 0.39 0.63 0.47 0.66 0.5 0.55
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Risk Reduced

Te
ch
no
lo
gy

Weight
Risk of Danger to Crew 3 1 1 1 1 1 1 1 1 1 1 1 1 1

Risk of Danger to Mission/Vehicle 2 0 0 1 1 0 1 1 1 1 0 1 1 1
Risk of Loss of Performance 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Total Weighted Score: 4 4 6 6 4 6 6 6 6 4 6 6 6
Normalized Score: 0.666667 0.666667 1 1 0.666667 1 1 1 1 0.666667 1 1 1
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Table A5: Technology to Risk Introduced factor-level trade table. 
 

 
 
 
 
 
 
 

Table A6: Technology to Research Interest (outside NASA) factor-level trade table. 
 

 
 
 
  

Risk Introduced

Te
ch
no
lo
gy

Weight
Risk of Danger to Crew 3 0 1 0 1 0 0 0 1 1 1 1 0 1

Risk of Danger to Mission/Vehicle 2 0 0 0 1 0 0 0 0 1 0 1 0 1
Risk of Loss of Performance 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Total Weighted Score: 1 4 1 6 1 1 1 4 6 4 6 1 6
Normalized Score: -0.16667 -0.66667 -0.16667 -1 -0.16667 -0.16667 -0.16667 -0.66667 -1 -0.66667 -1 -0.16667 -1
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Research interest (outside NASA)

Te
ch
no
lo
gy

Weight
Web of Science 1E-05 3 9 978 2488 19449 151 708 26950 2407 1965 76615 88349 9017
Google Scholar 8E-07 15600 8770 17400 93500 508000 13900 17500 49100 27800 18600 591000 1320000 312000

Total Weighted Score: 0.011852 0.006746 0.024252 0.098994 0.604987 0.012239 0.021271 0.342237 0.048305 0.036332 1.314913 2 0.338425
Normalized Score: 0.005926 0.003373 0.012126 0.049497 0.302493 0.00612 0.010636 0.171119 0.024152 0.018166 0.657457 1 0.169212
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Table A7: Technology to TRL factor-level trade table. 
 

 
 
 
 
 
 
 

Table A8: Technology to Research Interest (within NASA) factor-level trade table. 
 

 
  

TRL

Te
ch
no
lo
gy

Weight
TRL less than 3 1 0 1 0 0 0 0 0 0 0 0 0 0 0

TRL 3-5 2 1 0 0 0 0 0 1 1 1 1 1 0 0
TRL 6 or greater 3 0 0 1 1 1 1 0 0 0 0 0 1 1

Total Weighted Score: 2 1 3 3 3 3 2 2 2 2 2 3 3
Normalized Score: 0.666667 0.333333 1 1 1 1 0.666667 0.666667 0.666667 0.666667 0.666667 1 1
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Research interest (within NASA)

Te
ch
no
lo
gy

Weight
Research interest (within NASA) 1 0 0 1 1 1 1 1 1 1 1 1 1 1

Total Weighted Score: 0 0 1 1 1 1 1 1 1 1 1 1 1
Normalized Score: 0 0 1 1 1 1 1 1 1 1 1 1 1
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Appendix B. Subject Matter Expert Summary of Backgrounds 
 
The SMEs interviewed to gather background information on the HARI trade space all have 
extensive experience in either HAR integration research, human factors, or both, in their respective 
fields. Additionally, three SMEs have experience in related fields: one person in data analytics, and 
two others in psychology/neuroscience. The SMEs have a wide range of experience addressing 
different research applications, captured in Table B1. 
 

Table B1. Background and Application Area Expertise of Interviewed SMEs 

SME Background 
Expertise 

Space Aviation Military Medical Automotive Locomotive Robotics 
(general) 

1 Industry  x x     
2 Industry  x x     
3 Academia x x   x x x 
4 Industry, 

former NASA x x  x    

5 Military   x x   x 
6 Academia, 

industry    x x   

7 Academia x x x   x  
8 Academia, 

industry  x     x 

9 Academia x   x   x 
10 Industry, 

former NASA x   x x   
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provided, including access to application frameworks, databases, and programming 
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robustness, the authors find that comparisons are difficult as there is no commonly accepted 
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an important role in hand gesture recognition systems. The authors find that, despite plenty 
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gaze cueing, factors that have affected task performance and user speech. The authors note 
several challenges mapping virtual to physical robots, especially that robot expression has 
fewer degrees of freedom. They also, however, suggest that physical systems may be able to 
better direct human gaze to targets of interest in a real environment as they can avoid the 
Mona Lisa gaze effect associated with virtual agents. 
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H. A. Yanco, A. Norton, W. Ober, D. Shane, A. Skinner, and J. Vice, “Analysis of Human-robot 
Interaction at the DARPA Robotics Challenge Trials,” Journal of Field Robotics, vol. 32, no. 3, pp. 
420–444, 2015. 

• Yanco et al.’s 2015 paper reviewed team performance at the DARPA Robotics Challenge 
(DRC) trials, analyzing the results, team structure, and human-robotic interfaces. The DRC 
trials were designed to test humanoid robots’ ability to respond to disaster scenarios where 
communications bandwidth was limited or degraded. Yanco et al.’s team analyzed 8 of the 
15 teams which volunteered to participate in their study, observing their team interaction and 
robot’s performance during the challenge. They identified four areas required for teams to be 
successful in the challenge: robot mobility, robot manipulation, situation awareness of the 
robot and its surroundings, and an effective way to command the robot. They further found 
that the most effective team was successful largely due to their: increased sensor fusion, 
which reduced the operator’s cognitive load and reduced the need to repeat tasks; decreased 
number of operators, which both increased situational awareness and decreased the amount 
of required operator input.  

 
A. Kolling, P. Walker, N. Chakraborty, K. Sycara, and M. Lewis, “Human Interaction With Robot 
Swarms: A Survey,” IEEE Transactions on Human-Machine Systems, vol. 46, no. 1, pp. 9–26, 
Feb. 2016. 

• Kolling et al.’s 2016 review is the first survey of human-swarm interaction, and presents the 
basics of swarm robotics, the cognitive needs of a swarm operator, and the challenges 
involved with providing a human-swarm interface. They break the cognitive complexity of 
the human-robot system into three difficulties, using an analogy of computational 
complexity: robots performing independent activities, with complexity O(n), which allows 
more robots to be controlled simply by adding more operators in a linear manner; robots 
interacting with other robots fully autonomously, with complexity O(1), which allows for a 
fixed number of robots to control any number of robots; and the case where robot-robot 
interaction must be controlled by an operator, with complexity O(>n), as the dependencies 
between robots results in more demand faster than the number of robots grows. Under the 
assumption that O(1) complexity (only one operator) is desired, they review various control 
methods of conveying operator intent to the swarm. 

 
E. Phillips, K. E. Schaefer, D. R. Billings, F. Jentsch, and P. A. Hancock, “Human-animal Teams As 
an Analog for Future Human-robot Teams: Influencing Design and Fostering Trust,” J. Hum.-Robot 
Interact., vol. 5, no. 1, pp. 100–125, Mar. 2016. 

• In their 2016 paper, Phillips et al. discuss the advantages of human-animal teams as an analog 
for the ongoing development of human-robot teams. They discuss the ways that trust is 
established and changes in human-animal teaming, how these effects are beginning to be 
seen in human-robot teams, and how this trust determines how humans interact with their 
robotic teammates. They argue that including nonverbal communication in robots can help 
humans to better understand their actions and intents, allowing humans to form appropriate 
expectations of them. They further suggest that it may be beneficial, in the short term, to 
make robots more co-dependent on their users until these autonomous systems are capable of 
more sophisticated capabilities. 
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K. E. Schaefer, J. Y. C. Chen, J. L. Szalma, and P. A. Hancock, “A Meta-Analysis of Factors 
Influencing the Development of Trust in Automation: Implications for Understanding Autonomy in 
Future Systems,” Hum factors, vol. 58, no. 3, pp. 377–400, May 2016. 

• Schaefer et al.’s 2016 meta-analysis reviews thirty studies to identify the significance of 
many factors influencing trust in automation. They first include three main moderators on 
trust, human, automation, and environment, and then further divide these main moderators 
into several submoderating effects. The authors observed that human-related factors have an 
overall moderate effect on trust development, and that automation or robotic capabilities play 
an important role on the formation of trust. They conclude by noting a large difference 
between human-robot interaction and human-automation interaction, attributing this to the 
need for more studies on system feature-based characteristics. They further recommend 
research on “the effects of human states, mode of communication, anthropomorphism, and 
agent transparency on trust development.” 

 
T. B. Sheridan, “Human–Robot Interaction: Status and Challenges,” Hum factors, vol. 58, no. 4, pp. 
525–532, Jun. 2016. 

• In his 2016 paper, Sheridan discusses the state of human-robotic interaction and challenges, 
breaking the field into four areas: human supervisory control of robots for industrial tasks, 
teleoperation in hazardous environments, automated highway and rail vehicles, and 
commercial aircraft, and human-robot social interaction. He suggests that major human 
factors research challenges include: “(a) task analysis that includes dynamics, economics, 
and other factors; (b) teaching the robot and avoidance of unintended consequences; (c) 
considering how both human and robot have mutual models of each other; (d) use of robots 
in education; (e) coping with user culture, fears, and other value considerations.” 

 
P. Tsarouchi, S. Makris, and G. Chryssolouris, “Human–robot interaction review and challenges on 
task planning and programming,” International Journal of Computer Integrated Manufacturing, vol. 
29, no. 8, pp. 916–931, Aug. 2016. 

• Tsarouchi et al.’s 2016 review focuses on human-robotics interaction in the topics of task 
planning/coordination, intuitive programming, and communication frameworks. They also 
note important technologies and sensors for human-robotic interaction, which include visual 
guidance and imitation learning, vocal commanding, haptics and force control, and physical 
HRI and safety. They note voice guidance as one of the most promising interaction 
modalities, suggesting that it is “the most natural and intuitive way of communication”, and 
that physical HRI applications are lacking despite considerable research into the field. 

 
Z. Lu, R. Happee, C. D. Cabrall, M. Kyriakidis, and J. C. de Winter, “Human factors of transitions 
in automated driving: A general framework and literature survey,” Transportation research part F: 
traffic psychology and behaviour, vol. 43, pp. 183–198, 2016. 

• In their 2016 paper, Lu et al. propose a classification tree which distinguishes six types of 
transitions in automated driving, provide use cases for these transitions, and apply their 
proposed framework to a review of the literature of experimental research of transitions in 
automated driving. Their decision tree has three levels, based on the questions of “Who 
initiates the transition?”, followed by “Who is in control after the transition?”, and finally, “Is 
the transition required?”. By utilizing the resulting six types of transitions and comparing to 
the research available in the literature, the authors were able to identify transitions which 
were rarely studied. They also consider the emerging abilities of adaptive automation. They 
end by noting that “[u]ntil the driving task is wholly automated under all possible 
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circumstances and humans are prohibited from driving manually, transitions between the 
driver and the automation will remain a key element of automated driving.” 

 
M. Vagia, A. A. Transeth, and S. A. Fjerdingen, “A literature review on the levels of automation 
during the years. What are the different taxonomies that have been proposed?,” Applied ergonomics, 
vol. 53, pp. 190–202, 2016. 

• In their 2016 paper, Vagia et al. review the level of automation taxonomies that have been 
proposed since the 1950s, present the differences between these taxonomies, provide an 
example taxonomy generated from their review, and review the recent trend of adaptive 
automation. As a result of their review, Vagia et al. identified 24 automation level 
characteristics and present how their reviewed authors grouped them. They further identify 
which of these levels are popular among their reviewed authors and discuss how some levels 
are more appropriate than others based on the context in which level of automation is meant 
to be used. Vagia et al. stress that “[w]hat is important to remember is that amongst the 
different levels presented by the authors there exist no ‘correct’ or ‘wrong’ levels, ‘better or 
worse’ ones, they are just different. It would be wrong to claim that some levels are better 
than others, or that one taxonomy is the best one. To be accurate, there is no available tool in 
measuring how “good” or “bad” a taxonomy is, which gives the opportunity to every 
potential user to use the one that fits his needs better.” They end by briefly noting the 
benefits of adaptive automation. 

 
H. Admoni and B. Scassellati, “Social Eye Gaze in Human-robot Interaction: A Review,” J. Hum.-
Robot Interact., vol. 6, no. 1, pp. 25–63, May 2017. 

• Admoni and Scassellati’s 2017 paper reviews the state of the art in social eye gaze for 
human-robot interaction. They break the research field into three categories: human-focused, 
research that characterizes human behavior during robotic interaction, design-focused, 
research that focuses on how the design and behavior of a robot affects its interactions with 
humans, and technology-focused, which focuses on the computational tools for generating 
robotic eye gaze, and does not generally focus on human interactions. The human-focused 
research to date has shown that humans can identify the target of a robot’s gaze, but that 
humans tend to have different patterns of behavior between robotic gaze and gaze from other 
humans. The design-focused research has shown that “contextually contingent gaze is more 
effective than gaze behaviors that are uncorrelated with the interaction” and increases human 
performance in a variety of tasks across many metrics. 

 
M. Ahmad, O. Mubin, and J. Orlando, “A Systematic Review of Adaptivity in Human-Robot 
Interaction,” Multimodal Technologies and Interaction, vol. 1, no. 3, p. 14, Sep. 2017. 

• Ahmad et al.’s 2017 review covered reported adaptive interactions across several domains in 
human-robot interaction, which included healthcare and therapy, education, public domains 
and work environments, and homes. After reviewing 37 papers which included user studies, 
they summarize their results by domain and provide future directions and challenges. They 
note the recognition of emotion as “one of the key technical challenges in state of the art 
HRI”, and that including the user’s emotion can lead to greater social engagement. Another 
technical challenge involves robot memory, and that research is needed to produce more 
sophisticated methods based on a robot’s previous interactions with a user. One issue with 
robot memory is user ethical concerns on their personal data storage, which are varied. The 
authors conclude by calling for a need for standardized evaluation metrics, noting that, while 
most results are driven from video analysis, there is “no protocol to analyze these videos for 
a set of measurements for different domains.” They also conclude that most studies, though 
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reporting positive findings, are only based on short term exposure with social robots, and that 
longitudinal research is needed to provide greater context.  

 
M. R. Endsley, “From Here to Autonomy: Lessons Learned From Human–Automation Research,” 
Hum factors, vol. 59, no. 1, pp. 5–27, Feb. 2017. 

• Endsley’s 2017 paper discusses the emerging problem of loss of operator situational 
awareness and out-of-the-loop performance problems associated with increasing system 
autonomy, reliability, and robustness. Endsley presents a model for human-autonomy system 
oversight (HASO), incorporating situation awareness, trust, workload and automation 
interfaces among the key system design features influencing human cognitive processes 
involved in successful interaction with automated systems. Twenty guidelines for the design 
of human-autonomy systems are presented, based off twenty years of research and an 
extensive literature search. Endsley closes her review by noting a number of areas where 
further research is required to realize fully autonomous systems: autonomy software 
validation, as traditional software testing techniques are not sufficient for testing autonomy 
because exhaustive state testing is difficult or impossible; learning system consistency, as 
there is concern that individuals acting with many different autonomous systems will be 
unclear how the current system interprets and adapts to their behavior, which leads to; 
transparency of learning systems, where it is both difficult for human operators to understand 
how machine learning techniques incorporate new information and for software 
programmers to understand what the system will do in every situation. While systems have 
an ever-increasing level of autonomy and intervention is increasingly rare, there are still 
situations where human intervention is required. Maintaining situational awareness in these 
systems will pose a continued problem for the foreseeable future. 

 
J. Guiochet, M. Machin, and H. Waeselynck, “Safety-critical advanced robots: A survey,” Robotics 
and Autonomous Systems, vol. 94, pp. 43–52, Aug. 2017. 

• Guiochet et al.’s 2017 survey discusses the deployment of advanced robotic applications to 
“real life” outside the laboratory and manufacturing warehouse. The authors suggest that the 
major question about robots is “how can we trust them?” and continue to discuss 
dependability and safety as two active issues and fields of work. They discuss the 
requirements to product commercialization in Europe, and robotics specific standards that 
have recently been released for industrial (ISO 10218:2011) and personal robots (ISO 
13482:2014), which the authors note as lacking. In order to discuss dependability, the 
definition of which the authors use “ability to deliver service that can justifiably be trusted”, 
the authors discuss the challenges associated with fault prevention, fault removal, fault 
forecasting, and fault tolerance. The authors end by noting the current challenges for 
dependability in autonomous systems, including adaptive safety monitoring, modeling and 
simulation for safety analysis, perception of hazardous situations, and human-robot 
interaction models. 

 
M. Zamora, E. Caldwell, J. Garcia-Rodriguez, J. Azorin-Lopez, and M. Cazorla, “Machine Learning 
Improves Human-Robot Interaction in Productive Environments: A Review,” in Advances in 
Computational Intelligence, 2017. 

• Zamora et al.’s 2017 review presents the necessary technologies for effectively linking 
humans, robots, and intelligent and traditional machines in the new generation of Industry 
4.0. They identify machine learning, computer vision, and augmented reality as three 
fundamental upcoming technologies. They discuss human-robot interaction in manufacturing 
regarding robotic level of autonomy, noting that most robots are controlled largely by 
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humans, and that few could be fully controlled by artificial intelligence. In reviewing which 
machine learning algorithms are currently being used, they found that neural networks 
accounted for an overwhelming majority, but that both supervised and unsupervised 
algorithms were about equally common. Their discussion proposes a future for 
manufacturing where robots use computer vision to detect human intentions, humans use 
augmented reality interfaces to view robot intentions, and artificial intelligence enables an 
optimal manufacturing workflow. 

 
H. Liu and L. Wang, “Gesture recognition for human-robot collaboration: A review,” International 
Journal of Industrial Ergonomics, vol. 68, pp. 355–367, Nov. 2018. 

• Liu and Wang’s 2018 review of covers the most essential technologies and algorithms for 
gesture recognition and human-robot collaboration. Their review breaks gesture recognition 
into four technical components for further discussion: sensor technologies, gesture 
identification, gesture tracking and gesture classification. Reviewing these technical 
components, they note the advantages and disadvantages to the different approaches within 
each. They end by noting that non-wearable sensors development and deep learning-based 
gesture recognition systems as the most promising upcoming technologies. 

 
D. P. Losey, C. G. McDonald, E. Battaglia, and M. K. O’Malley, “A Review of Intent Detection, 
Arbitration, and Communication Aspects of Shared Control for Physical Human–Robot Interaction,” 
Appl. Mech. Rev, vol. 70, no. 1, pp. 010804-010804–19, Feb. 2018. 
 

 
 

Figure B1. Losey et al.’s proposed framework for human-robot interaction 
with the environment. 

 
• Losey et al.’s 2018 review discusses the state of the art in the field of physical human-robot 

interaction, where human abilities are enhanced or supported by robotic aids, and discuss the 
human factors involved with shared task execution between the human and robot. They 
present a unified view of shared human-robot control in physical task execution, using case 
studies of applications in healthcare to demonstrate their framework. Their framework 
focuses on three distinct phases of decision making: detection, the task of understanding the 
human’s intent; arbitration, the task of distributing control between the human and robot; and 
feedback, the task of presenting the result of the human’s intent, which is often done through 
haptic devices. One ongoing field of research in physical human-robot interaction is that of 
dynamic changes in role arbitration using machine learning and artificial intelligence 
techniques. The authors note role arbitration should re-evaluated when trust changes, and 
further note “robotic performance has the largest and most identifiable influence on trust in 
HRI.” As such, the real-time monitoring of performance metrics is an area of active research. 
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T.-M. Wang, Y. Tao, and H. Liu, “Current Researches and Future Development Trend of Intelligent 
Robot: A Review,” International Journal of Automation and Computing, vol. 15, no. 5, pp. 525–
546, 2018. 

• In their 2018 review, Wang et al. discuss current research and future development trends of 
“intelligent” robots. They note several key and leading technologies in the field of robotics. 
They include key technologies such as human-robot collaboration technology, autonomous 
navigation technology under non-structured environments, multi-agent robot systems 
(swarms), and emotion recognition and interaction mechanism of robot oriented to 
harmonious human-robot cooperation. They also highlight innovative leading technologies 
such as brain computer interfaces, brain-like robot control and decision making (artificial 
intelligence and supervised/unsupervised learning techniques), material cross-innovation and 
applications of robot oriented to software structure (3D printed materials, soft grippers, 
flexible robots), and network decision mechanism of robot based on cloud computing and big 
data (IoT, SLAM). Their review further breaks down these technology areas into more 
specific, individual technologies and notes the current state of the art in each. 

 
 
 
 


