
607 Copyright 1996 Psychonomic Society, Inc.

Behavior Research Methods, Instruments, & Computers
1996, 28 (4), 607-610

Cinematica: A system for calibrated, 
Macintosh-driven displays from

within Mathematica

JOSHUA A. SOLOMON
Institute of Ophthalmology, London, England

and

ANDREW B. WATSON
NASA Ames Research Center, Moffet Field, California

Cinematica is a minimal system for producing cali-
brated grayscale movies on an Apple Macintosh computer
from within the Mathematica programming environ-
ment. It makes use of the ISR Video Attenuator and the
VideoToolbox software library developed by Denis Pelli.
By design, Cinematica provides a very low-level interface
to the display routine. Display instructions take the form
of a list of pairs (image index, colormap index). The phi-
losophy is that programming is much easier in Mathe-
matica than in C, so we reserve the complexity for Math-
ematica. A few simple examples are provided.

Precise measurement of visual function requires 
precise control of contrast and display timing. Recent
technological advances, in both hardware and software,
have made it possible for vision scientists to make such
measurements with the use of ordinary computer equip-
ment.

Exploiting an idea by Watson et al., (1986), Pelli and
Zhang (1991) have designed a device called the Video At-
tenuator, which provides precise contrast control by en-
abling ordinary color video cards (with 8-bit DACs) to
produce monochrome displays with 12-bit accuracy. Pelli
has also assembled a collection of low-level C routines
(the VideoToolbox) that, when used in conjunction with
a Video Attenuator, are capable of producing displays of
grayscale movies from Macintosh computers with the
precision that vision science demands.

C is a low-level computer language. As such, it can
often take considerable effort to write a working program
that will produce the desired image displays, even with
the VideoToolbox. We wanted a high-level, yet versatile,
language with which both experts and novices could
quickly assemble vision experiments. Mathematica (Wolf-
ram, 1991) is a versatile, high-level computer language,
but, by itself, it is not capable of producing calibrated vi-
sual displays. Thus we have created Cinematica, a system
integrating the precision of the Video Attenuator and
VideoToolbox with the accessibility of Mathematica.

The distribution of Cinematica contains three impor-
tant items. The first item, Cinematica.m, is a small package
of Mathematica routines which provides the interface

(via MathLink) to the second item, an application which,
by utilizing select features of the VideoToolbox, directly
controls image displays. The third item, Cinematica.ma,
contains the Cinematica Tutorial, excerpts from which ap-
pear below. Cinematica requires a minimum of 4 Mb un-
used RAM. One additional byte is required for every pixel.

The tutorial is written as a Mathematica notebook in
which Mathematica commands are indented, in bold type-
face. The tutorial requires a computer with two monitors.
On one monitor, the user follows the tutorial, executing
each command with a keystroke. The displays appear on
the other monitor. These examples demonstrate the ease
with which one can now control the display of research-
quality visual stimuli from within Mathematica.

Tutorial
Display a single image. The simplest possible use of

Cinematica consists of three steps: (1) load an image,
(2) load a colormap, and (3) display the image with the
colormap. We illustrate these steps.

We first create in Mathematica an image consisting of
a single frame of noise, and display it on the console for
verification.

noise =
Table[Random[Integer, {2, 254}], {32}, {32}];

ListDensityPlot[noise,
Frame->False, Mesh->False];

Next we load the image into a type of Macintosh mem-
ory called a GWorld. Each image is associated with an
arbitrary integer index.

MovieToGWorld[1, noise];

Next we create one colormap. (A colormap is a table
mapping pixel gray level to pixel luminance.) This also
gets an arbitrary integer index. We use the defaults for
the other parameters. This will get us a linear, unit contrast
colormap.

ColorMap[1];

Next we display the image using the colormap. This is
done by calling GWorldToScreen with a single argu-
ment consisting of a display list that consists of {image

Correspondence should be addressed to J. A. Solomon, Institute of
Ophthalmology, Bath Street, London EC1V 9EL, England.



608 SOLOMON AND WATSON

index, colormap index} pairs. In this case, the list con-
tains only one pair.

GWorldToScreen[{{1, 1}}];

One should see a 32 ! 32 pixel noise image on an other-
wise dark background.

Changing the background luminance. GWorldToScreen
copies images to an area of video memory that we will
call the screen. Initially the entire screen is set to the gray
level zero. To create a uniform background of a luminance
other than zero, we create a new colormap. This call to
ColorMap is a little more complicated. We specify that
the colormap index is 1 (note that we may freely reuse
colormap and image indices), the contrast is 1, and the
image gray levels will range between 2 and 254; and we
assign the remaining 3 gray levels to specific relative lu-
minances that correspond to the mean, minimum, and
maximum. (The gray level values 1 and 255 will not be
used in this excerpt from the tutorial.) Thus our uniform
background of 0s will map to a relative luminance of 0.5
(the mean luminance). Note also that symmetric place-
ment of minimum and maximum gray levels means that
128 will also map to the mean luminance.

ColorMap[
1, 1, 2, 254, {{0, .5}, {1, 0.}, {255, 1.}}];

Now we display the noise image with the new colormap.

GWorldToScreen[{{1, 1}}];

Display a single image for a specified duration. Here
we load an image of zeroes.

MovieToGWorld[2, Table[0, {32}, {32}]];

Here we load a zero-contrast colormap.

ColorMap[
2, 0, 2, 254, {{0, 0.5}, {1, 0.}, {255, 1.}}];

Here we display the blank image with the zero-contrast
colormap

GWorldToScreen[{{2, 2}}];

It is now a simple matter to show the noise image for a
fixed duration of 32 frames.

The duration of this display will depend on the refresh
rate of the display monitor. For example, if the refresh
rate is 67 Hz, this 32-frame display will be 0.48 sec long.

GWorldToScreen[
Join[{{2, 2}}, Table[{1, 1}, {32}], {{2, 2}}]];

Note that not all video drivers are capable of redrawing the
entire screen at every available refresh rate. TimeVideo
(an application within the VideoToolbox) can determine
the display rate accuracy of any Macintosh-driven display.

A moving image. Cinematica contains no special provi-
sions for making images move. Instead, moving images
are created in advance as a sequence of frames. In this ex-

ample, we create the frames by scrolling the noise image
created above. Note that the first frame is assigned index
3, and subsequent frames increment by 1.

MovieToGWorld[
3, Table[RotateRight[noise, k], {k, 32}]];

Now we can show something. We create a display list that
consists of {image index, colormap index} pairs. This list
is given to GWorldToScreen.

GWorldToScreen[Join[{{2, 2}},
Table[{k, 1}, {k, 3, 34}], {{2, 2}}]];

One should see a 128 ! 128 gray rectangle in which is
embedded a square of noise that scrolls vertically for a du-
ration of 32 frames.

Varying contrast over time. Now we create a set of 32
colormaps that describe a Gaussian variation in contrast.
First we create a sequence of contrast values (the time list).
This Gaussian has a time scale of 16 frames and is cen-
tered on the 17th frame.

gauss =
Table[N[Exp[-Pi*(((t - 17)/16)^2)]], {t, 32}];

We plot the waveform for verification.

ListPlot[gauss, PlotJoined->True];

We use the time list to load a set of 32 colormaps, one for
each contrast. We start at index 3, to leave our unit- and
zero-contrast colormaps in place.

ColorMap[3,
gauss, 2, 254, {{0, 0.5}, {1, 0.}, {255, 1.}}];

We create a display list that associates our static noise
repeatedly with the elements of the list of colormaps. As
usual, we return to the uniform field at the end of the
display.

dlist = Join[{{2, 2}},
Table[{1, n}, {n, 3, 34}], {{2, 2}}];

GWorldToScreen[dlist];

Loading image files. Above we have emphasized load-
ing of images and movies directly from Mathematica ex-
pressions. Occasionally one may wish to load an image
file that was created previously by Mathematica or some



CINEMATICA 609

other source. To do this we use the function FileToGWorld.
For illustration, we first write an image to a file.

WriteBinary[“Cinematica.test”,
Flatten[noise], ByteConversion->Identity];

Close[“Cinematica.test”];

Then we write the file to the GWorld, specifying the image
dimensions.

FileToGWorld[“Cinematica.test”, 4, 32, 32];

Then we verify that it displays correctly.

GWorldToScreen[{{4,1}}];

Availability
Cinematica and the VideoToolbox are free on the

World Wide Web. The URL is http://vision.arc.nasa.gov/
mathematica /Cinematica /Cinematica.html. The ISR
Video Attenuator is available from Syracuse University.
Consult the VideoToolbox for ordering instructions.
Mathematica is available from Wolfram Research Insti-
tute, Champaign, IL. The authors have no proprietary in-
terest in any of these programs.

Conclusion
The preceding should convince readers that Cinemat-

ica provides a simple means of displaying grayscale stim-
uli for vision experiments. Readers should also appreci-
ate the ease with which programs can be assembled in
Mathematica. Since each line of a Mathematica program
can be executed and verified as soon as it is typed, we be-
lieve that learning to program in Mathematica should be
easier than learning to program in C. Vision experiments
in our laboratories are driven by Macintosh programs writ-
ten entirely in Mathematica. Readers wishing to learn
about procedural aspects in addition to image display are
encouraged to contact the authors. A summary of Cine-
matica functions is given in Appendix A. Code for an ex-
ample experiment is provided in Appendix B.

REFERENCES

Pelli, D. G., & Zhang, L. (1991). Accurate control of contrast on mi-
crocomputer displays. Vision Research, 31, 1337-1350.

Watson, A. B., Nielsen, K. R. K., Poirson, A., Fitzhugh, A., Bil-
son, A., Nguyen, K., & Ahumada, A. J., Jr. (1986). Use of a raster
framebuffer in vision research. Behavior Research Methods, Instru-
ments, & Computers, 18, 587-594.

Wolfram, S. (1991). Mathematica: A system for doing mathematics by
computer (2nd ed.). New York: Addison-Wesley.

APPENDIX A
Summary of Cinematica Functions

CinematicaOpen[]: Must be called prior to any other Cinemat-
ica Functions.

MovieToGWorld[imageIndex_,movie_]: Load a grayscale image
or movie into GWorld(s). The user must ensure that the pixels
are integers between 0 and 255. Each frame of the movie has
its own GWorld. The index of the first frame’s GWorld is
imageIndex. The index of the n-th frame’s GWorld imageIn-
dex+n, and so on.

ColorMap[cMapIndex_,contrast_:1.,grayMin_:0,grayMax_:
255,cMapList_:{{0,.5}},gamma_:1.]: Calculate a lookup table
with index cMapIndex. contrast must be a real number between
-1. and 1., corresponding to the desired proportion of obtain-
able contrast (when the minimum luminance is close to zero,
this will be equal to luminance contrast). grayMin and gray-
Max refer to the range of gray levels to which the to-be-
displayed image has been scaled. Any leftover color map en-
tries can be assigned a luminance manually by setting
cMapList={{gray_1, luminance1},{gray_2, luminance2},
. . .}, where luminancei is a real number between 0. and 1. on
a linear scale of the available luminances. For technical reasons,
cMapList cannot be empty. However, manual luminance as-
signments to gray levels between grayMin and grayMax are
ignored. gamma is the desired exponent of the mapping be-
tween gray levels and luminance; if a linear relation is de-
sired, this should be the default value of 1.

GWorldToScreen[displayList_]: Display a movie. displayList
should be a list of pairs, {{imageIndex1,cMapIndex},{image
Index2,cMapIndex}, . . .}, one pair for each refresh of the dis-
play. Note that the writing of an image to the screen and the
implementation of a colormap cannot be truly simultaneous.
Cinematica implements the colormap first. To prevent the
brief display of an image before the proper colormap is im-
plemented, the user may wish to begin displayList with a
blank image coupled to a zero-contrast colormap.

CinematicaClose[]: Should be called prior to termination of any
Mathematica session involving any Cinematica Functions.

FileToGWorld[file_,imageIndex_,cols_,rows_:1,frames_:1]:
Load a raw, byte-format, grayscale movie from a file to
GWorlds. Each frame of the movie has its own GWorld. The
index of the first frame’s GWorld is imageIndex, the index of
the n-th frame’s GWorld imageIndex+1 and so on.

APPENDIX B
Example Experiment

Here is an example of an experiment in which the method of
adjustment is used to collect a contrast threshold for a square
decrement stimulus of variable size and duration. After each
presentation, the observer responds “decrement visible,” “decre-
ment invisible,” or “decrement exactly at threshold.” The con-
trast of the decrement is adjusted accordingly.

<< Cinematica.m

Experiment[size_:64, frames_:16] := (
CinematicaOpen[];
ColorMap[1, 0., 1];
MovieToGWorld[

blank = 1, Table[0, {size}, {size}]];
MovieToGWorld[

stimulus = 2, Table[1, {size}, {size}]];
GWorldToScreen[{{blank, 1}}];
displayList = Join[



610 SOLOMON AND WATSON

Table[{stimulus, 2}, {frames}],
{{blank, 1}}];

contrast = 1.;
Catch[While[True, (

ColorMap[2, contrast, 1];
GWorldToScreen[displayList];
contrast =

N[Min[1., contrast*Sqrt[2]^Switch[
Input[“1 (visible)\n\

0 (invisible)\n\
2 (at threshold)”],

0, 1,
1, -1,
2, (CinematicaClose[];

Throw[contrast])]]])]])

Experiment[]

0.0078125

(Manuscript received August 10, 1995;
revision accepted for publication November 16, 1995.)


