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Visibility of Wavelet Quantization Noise
Andrew B. Watson, Gloria Y. Yang, Joshua A. Solomon, and John Villasenor, Member, IEEE

Abstract—The discrete wavelet transform (DWT) decomposes
an image into bands that vary in spatial frequency and orienta-
tion. It is widely used for image compression. Measures of the
visibility of DWT quantization errors are required to achieve
optimal compression. Uniform quantization of a single band
of coefficients results in an artifact that we call DWT uniform
quantization noise; it is the sum of a lattice of random amplitude
basis functions of the corresponding DWT synthesis filter. We
measured visual detection thresholds for samples of DWT uni-
form quantization noise in Y, Cb, and Cr color channels. The
spatial frequency of a wavelet is , where is display visual
resolution in pixels/degree, and is the wavelet level. Thresholds
increase rapidly with wavelet spatial frequency. Thresholds also
increase from Y to Cr to Cb, and with orientation from lowpass
to horizontal/vertical to diagonal. We construct a mathematical
model for DWT noise detection thresholds that is a function
of level, orientation, and display visual resolution. This allows
calculation of a “perceptually lossless” quantization matrix for
which all errors are in theory below the visual threshold. The
model may also be used as the basis for adaptive quantization
schemes.

Index Terms—Discrete wavelet transform, image compression,
quantization, wavelet.

I. INTRODUCTION

WAVELETS form a large class of signal and image
transforms, generally characterized by decomposition

into a set of self-similar signals that vary in scale and (in two
dimensions) orientation [1]. The discrete wavelet transform
(DWT) is a particular member of this family that operates on
discrete sequences, and which has proven to be an effective
tool in image compression [2]–[7]. The DWT is closely related
to and in some cases identical to subband codes [8], perfect-
reconstruction filterbanks [9], and quadrature mirror filters. In
a typical compression application, an image is subjected to
a two-dimensional (2-D) DWT whose coefficients are then
quantized and entropy coded.
DWT compression is lossy, and depends for its success

upon the invisibility of the artifacts. However, in the published
literature there are few data [10] and no formulae describing
the visibility of DWT artifacts. The purpose of this paper is
to provide this information, and to show in a preliminary way
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Fig. 1. A two-channel perfect-reconstruction filterbank.

Fig. 2. Two-level 1-D discrete wavelet transform.

how it may be used in the design of wavelet compression
systems. In this research we have generally followed earlier
work on the discrete cosine transform [11]–[19], with some
important differences that will be discussed below.

II. BACKGROUND

A. Discrete Wavelet Transform
Fig. 1 illustrates the elements of a one-dimensional, (1-

D) two-channel perfect-reconstruction filterbank. The input
discrete sequence is convolved with highpass and lowpass
analysis filters and , and each result is downsampled by
two, yielding the transformed signals and . The signal is
reconstructed through upsampling and convolution with high
and low synthesis filters and . For properly designed
filters, the signal is reconstructed exactly ( ).
A DWT is obtained by further decomposing the lowpass

signal by means of a second identical pair of analysis
filters, and, upon reconstruction, synthesis filters, as shown in
Fig. 2. This process may be repeated, and the number of such
stages defines the level of the transform.
With 2-D signals such as images, the DWT is typically

applied in a separable fashion to each dimension. This may
also be represented as a four-channel perfect reconstruction
filterbank, as shown in Fig. 3. Now each filter is 2-D, with
the subscript indicating the separable horizontal and vertical
components, and the downsampling operation is applied in
both dimensions. The resulting four transform components
consist of all possible combinations of high- and low-pass
filtering in the two dimensions. As in the 1-D case, the process
may be repeated a number of times, in each case by applying
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TABLE I
COEFFICIENTS OF LINEAR-PHASE 9/7 SYNTHESIS FILTERS AND (ORIGIN IS AT INDEX 0, COEFFICIENTS FOR NEGATIVE INDICES FOLLOW BY SYMMETRY).

Fig. 3. Four-channel, 2-D perfect-reconstruction filterbank.

the component as input to a second stage of identical
filters.

B. Levels, Orientations, and Bands
Here we adopt the term level to describe the number

of 2-D filter stages a component has passed through, and
we use the term orientation ( ) to identify the four possible
combinations of lowpass and highpass filtering the signal has
experienced. We index orientations as follows:

where low and high are in the order
horizontal–vertical. Each combination of level and orientation

specifies a single band. This terminology is illustrated
in Fig. 4.

C. Linear-Phase 9/7 Wavelets
For the purpose of this research, it is necessary to choose

a particular DWT, that is, a particular pair of filters and
. We selected the linear-phase 9/7 biorthogonal filters [20].

They were chosen because i) they are symmetrical (linear-
phase); ii) they are in wide use [3]; iii) they have been argued
to have certain mathematical properties attractive for image
compression [5]; and iv) they have been adopted as part of the
FBI standard for compression of fingerprint images [2]. Since
we shall be dealing primarily with synthesis filters, we give
the synthesis coefficients in Table I and show them graphically
in Fig. 5. For a perfect-reconstruction filterbank, the synthesis
filters may be derived directly from the analysis filters.

D. DWT Quantization Matrix
Compression of the DWT is achieved by quantization and

entropy coding of the DWT coefficients. Typically, a uniform
quantizer is used, implemented by division by a factor Q and
rounding to the nearest integer. The factor Q may differ for
different bands. It will be convenient to speak of a quantization
matrix to refer to a set of quantization factors corresponding
to a particular matrix of levels and orientations.
Quantization of a single DWT coefficient in band

will generate an artifact in the reconstructed image that is
proportional to the impulse response of the corresponding
synthesis filter cascade. Examples of impulse responses for

Fig. 4. Indexing of DWT bands. Each band is identified by a level and an
orientation . This example shows a three level transform.

two levels and four orientations are shown in Fig. 6. Although
they are rendered as images with equal size to emphasize self-
similarity, the images in the upper row (level 2) in fact are
twice as large (in pixels) in each dimension.
A particular quantization factor in one band will result in

coefficient errors in that band that are approximately uniformly
distributed over the interval . The error image
will be the sum of a lattice of basis functions with amplitudes
proportional to the corresponding coefficient errors. Thus, to
predict the visibility of the error due to a particular , we must
measure the visibility thresholds for individual basis functions
and error ensembles.

E. Display Visual Resolution
Visibility of DWT basis functions will depend upon display

visual resolution in pixels/degree. Given a viewing distance
in cm and a display resolution in pixels/cm, the effective
display visual resolution (DVR) in pixels/degree of visual
angle is

(1)

A useful mnemonic is that visual resolution is the viewing
distance in pixels (dv) divided by 57.3. Table II provides some
illustrative examples.

F. Wavelet Level, Display Resolution, and Spatial Frequency
We have indexed DWT basis functions by a level and

an orientation . By their nature, wavelet bases of one ori-
entation at different levels are essentially scaled versions of
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TABLE II
EXAMPLES OF VISUAL RESOLUTION FOR VARIOUS DISPLAYS. THE HDTV EXAMPLE ASSUMES

1152 ACTIVE LINES AT A VIEWING DISTANCE OF THREE PICTURE HEIGHTS

Fig. 5. Linear-phase 9/7 synthesis filters.

Fig. 6. Linear-phase 9/7 wavelet basis functions at two levels. The images for level 1 are 16 16 pixels, those for level 2 are 32 32 pixels.

one another (Fig. 6). In terms of the signal that reaches the
eye, the magnification of the basis function that results from
a move down one level in the transform is equivalent to a
decrease by a factor of two in display resolution. A metric that
incorporates this equivalence, and that clearly expresses the
visual resolution of a given basis function, is spatial frequency
expressed in cycles/degree.
A single basis function encompasses a band of spatial

frequencies, and at this point it is only necessary that we
identify this band in some consistent fashion. The DWT
operates essentially by bisecting a frequency band at each
level. At the first level of the transform, the selected band
extends from the Nyquist frequency, which will be half the
display resolution, to half the Nyquist. At the next level, the
band will be lower by a factor of two, and so on. Therefore,
we will take the Nyquist frequency of the display resolution
as the nominal spatial frequency of the first DWT level, and
the frequency of each subsequent level will be reduced by a

factor of two. Thus for a display resolution of pixels/degree,
the spatial frequency of level will be

cycles/degree (2)

G. Gamma Correction
Digital gray-scale images typically contain values that rep-

resent so-called gamma-corrected luminance [21]. This is
a power function of luminance, with an exponent of around
1/2.3. Likewise, digital color images are typically represented
by gamma-corrected R , G , and B , which are similarly power
functions of corresponding linear primaries. Color transforms
in wide use, such as , are linear transforms of these
nonlinear quantities.
Image compression algorithms typically operate directly

on these corrected values, rather than on luminance values
themselves. This means that in the particular example of
a wavelet transform, the artifact due to quantization of a
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particular coefficient will be a wavelet basis function in this
nonlinear intensity domain. To allow direct predictions, we
therefore conducted our experiments in the gamma-corrected
domain, using 2.3 as the defining exponent. In our earlier work
on the discrete cosine transform (DCT), we chose to estimate
visibility of DCT basis functions of luminance, corresponding
to a display gamma of one, but that required somewhat indirect
predictions of visibility of artifacts in the gamma-corrected
domain. Nevertheless for comparison, we also collected one
set of thresholds using a display gamma of one. This display
gamma was arranged through manipulation of color look-up
tables in the computer-display interface [22].
The specific color space we investigate is YCbCr [23], [24].

For simplicity of notation, in the remainder of this paper
we will use the , , and to designate values in this
gamma-corrected color space.

III. METHODS

A. Stimuli
Stimuli were modulations of either , , or channels

of a color image. In each case the two unmodulated channels
were set to a constant value of zero. These produce images that
are black/white, yellow/purple, and red/green, respectively. All
modulations were added to an otherwise uniform (

) image of size 1024 1024 pixels.
Modulations were either single DWT basis functions or

samples of DWT uniform quantization noise. In either case,
individual modulation images were scaled to produce ampli-
tudes in the range of [0, 126]. When added to the mean of
128, this yields gray levels ranging from [2–254]. We reserved
gray levels 0, 1, and 255 for fixed elements of the display,
such as fixation marks. The peak amplitude of the modulated
signal is our measure of stimulus intensity. The modulated
channel, plus the two remaining unmodulated channels, were
then transformed to R G B using the rule

(3)

Gray-scale stimuli were presented on an Apple 12-in mono-
chrome display (family # M1050, manufactured 3/91) with
a resolution of 30.1 pixels/cm, and were viewed from a
distance of 121.9 cm, yielding a display visual resolution of 64
pixels/degree. The mean luminance of the display ( )
was 14 cd/m . The measured gamma was 2.3.
Color stimuli were presented on a Taxan 20-in color monitor

(UV 1095, manufactured 2/91) with a resolution of 35.26
pixels/cm, viewed from a distance of 104 cm, for a display
visual resolution of 64 pixels/degree. The mean luminance of
the display (R G B ) was 17.3 cd/m . The
measured gamma of the monitor was 2.31, and the maximum
luminance was 87.5 cd/m . The CIE Yxy chromaticities of
the three color guns were R , G =

, B = .
To vary the display visual resolution we pixel-replicated the

stimuli by factors of one (no replication), two, or four in both

(a) (b)

Fig. 7. Construction of DWT basis function stimulus. (a) Three-level DWT,
with the band levels separated by tick marks and progressing in order from
top to bottom and right to left (see Fig. 4). A single coefficient in band
is set to one, the rest is set to zero. (b) Inverse DWT of the transform in A.
This is a basis function for band . Image size is 64 64.

(a) (b)

Fig. 8. Construction of a DWT noise image. (a) Two-level DWT with band
filled with noise. (b) Inverse DWT of the transform in A. Image size

is 32 32.

dimensions, yielding effective visual resolutions of 64, 32, and
16 pixels/degree. For all stimuli, the duration was 16 frames in
duration at a frame rate of 60 Hz, or 267 ms. The time course
was a Gaussian where is in frames.
1) DWT Basis Function Stimuli: We created images of

basis functions by setting to the value one a single coefficient
in band in an otherwise zero DWT, and computing
the inverse DWT. Image width was the smallest power of
two large enough to accommodate the support of the basis
function, which is equal to . An example for band

is shown in Fig. 7.
2) DWT Uniform Quantization Noise Stimuli: Samples of

DWT uniform quantization noise were produced by filling one
band of an otherwise zero DWT with samples drawn uniformly
from an interval [ , 1], and inverse transforming the result.
The image size was selected for each level in such a way that
the size of the filled band was always 8 8. For level , this
means that image width was 2 . An example is shown in
Fig. 8.

B. Threshold Measurement
In the gray-scale experiments, stimulus amplitude was con-

trolled by means of look-up tables [22], [25]. This allowed
display of signals with amplitudes less than one. For color
experiments ( and ) stimuli of various amplitudes were
computed in advance as digital movies, and thus limited to
integer amplitudes.
To measure detection thresholds for individual stimuli, we

used a two-alternative forced-choice (2AFC) procedure. Each
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trial consisted of two 267-ms time intervals, one containing a
uniform gray screen with luminance , and one containing
the stimulus added to the uniform gray screen. A pause
of 534 ms separated the two intervals, which were marked
by audible warning tones. Following the presentation, the
observer selected the interval that appeared to contain the
stimulus. From trial to trial, the amplitude of the stimulus
was varied adaptively using a Quest staircase [26]. Following
32 trials, a Weibull function was fit to the proportion correct
expressed as a function of log amplitude, and threshold was
estimated as the amplitude yielding 82% correct [27].
A small gray cross (3 3 pixels, ) at the center of

the screen served as a fixation point and aid to accommodation.
The cross was extinguished during each stimulus presentation,
but remained on between the two intervals of the trial and
between trials.
Three observers took part in the experiments. Observer gyy

was a 23-year-old female, sfl was a 21-year-old male, and
abw was a 43-year-old male. Observers gyy and abw were
corrected myopes, sfl was emmetropic. Viewing was binocular
with natural pupils in an otherwise darkened room.

IV. RESULTS
We begin our discussion of results with an examination

of gray-scale data for two observers (gyy and sfl) for two
different stimuli (basis functions and noise patterns) at two
different display gammas (1 and 2.3). This will reveal some
basic patterns in the data, as well as differences due to stimulus
type and display gamma. We then demonstrate from a subset of
the data that DWT level has little effect upon visual thresholds,
once the effect of spatial frequency has been factored out. We
next compare basis function and noise thresholds, and show
how one may be predicted systematically from the other.
Following these analyses, we will consider only thresholds

for noise patterns collected with a display gamma of 2.3.
The gray-scale data are fit with a mathematical model, and
thresholds for color wavelets are presented and fit by the same
model.

A. Gray-Scale Results
Fig. 9 shows gray-scale thresholds for various DWT sig-

nals and observers as a function of spatial frequency and
orientation. In these and all subsequent figures, thresholds are
expressed as the peak amplitude of the signal, in units of digital
levels, with an implicit range of 2–254 between darkest and
brightest levels. Because the signals are superimposed on a
background of 128, the largest possible amplitude is 126. The
first panel shows luminance amplitude thresholds, obtained
with a display gamma of one, for single basis functions. They
show a rapid ascent at higher frequencies, and also show an
effect of orientation: Highest thresholds are for orientation
3 (obliques), lowest are for orientation 1 (lowpass), and
intermediate thresholds are obtained for orientations 2 and 4
(horizontal and vertical). The second panel shows comparable
data for a display gamma of 2.3. Thresholds are generally
lower, but the pattern of results is similar. The third and
fourth panels show thresholds for two observers for noise

Fig. 9. Thresholds for DWT signals. Orientations are indicated by the line
within each symbol. Text in each panel indicates observer, stimulus, and
gamma. Error bars of plus and minus one standard deviation are included
where repeated measures were taken.

images at a display gamma of 2.3. The pattern is again similar,
with a further general reduction in thresholds. For the reasons
outlined in the introduction, we have focused upon the case
of display gamma 2.3. Accordingly, all subsequent analyses
and discussions refer only to this case.

B. Effect of DWT Level
To verify that DWT level or display visual resolution per se

have little effect upon visual thresholds when spatial frequency
is held constant, we have collected thresholds for noise

images at three display resolutions. Display resolution was
varied by pixel replication of 1, 2, or 4 in each dimension
from a basic value of 64 pixels/degree, yielding effective
visual resolutions of 64, 32, and 16 pixels/degree. Due to
nonlinearities between horizontally adjacent pixels in typical
monitors [28], we only used an orientation of 4 (vertical
modulation) at 64 pixels/degree.
Thresholds for display resolutions of 16, 32, and 64 pix-

els/degree, all at orientation 4, are shown in Fig. 10. Where
multiple measurements have been made, error bars are shown.
Though there is some indication of a small systematic dif-
ference for gyy between 32 and 64 pixels/degree, in general
thresholds are largely unaffected by resolution, once they are
expressed as a function of spatial frequency in cycles/degree.
Fig. 11 shows additional data for observer sfl at 16 and 32

pixels/degree. There is again little evidence of any substantial
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Fig. 10. Thresholds at display resolutions of 16 (triangles), 32 (squares) and
64 pixels/degree (circles), for orientation 4.

Fig. 11. Thresholds at display resolutions of 16 (dashed line) and 32
pixels/degree (solid line), for orientations 1, 2, and 3.

effect of resolution per se, once the thresholds are plotted as
a function of spatial frequency in cycles/degree.

C. Single Basis Functions versus Noise Images
Fig. 12 plots the difference between log thresholds for

single basis functions and for noise images, taken from the
second and third panels of Fig. 9. As expected, basis function
thresholds are uniformly higher than noise thresholds.
We considered a simple spatial probability summation

model to account quantitatively for the difference between
basis function and noise thresholds [27], [29]. In this context,
this model asserts that the Minkowski sum over individual
basis functions amplitudes is equal for all basis functions
ensembles at threshold. In particular, if threshold for a single
basis function is , and if are the amplitudes of the
basis functions that make up the threshold noise stimulus, then

(4)

For detection of simple contrast stimuli, an exponent of
about 3–4 is typically observed. The threshold contrast
is measured directly, but the set of amplitudes must be
derived from the threshold amplitude of the noise stimulus

. Let be the amplitude of the basis function that
results from a unit DWT coefficient . Then in general,

. A particular set of random coefficients will
result in a noise waveform with amplitude . Thus, if the

Fig. 12. Difference between log thresholds for DWT noise and basis func-
tions. Open symbols show data for individual orientations, solid symbols are
the means. The heavy line is the prediction from probability summation.

Fig. 13. Fit of the threshold model to grayscale data of observers gyy and sfl.

noise amplitude at threshold is , the corresponding coef-
ficients are . The individual basis function
amplitudes are then

(5)

Combining (4) and (5), we find

(6)

The ratio is close to one for all noise stimuli
(almost always slightly less than one), which makes sense
since the random numbers were drawn from a uniform dis-
tribution over . In log units, it averages .
To compute the second term in this prediction we first note

that exactly the same random samples were used for each
noise stimulus. With , this term equals 0.295 log units,
for a combined prediction of 0.2745 log units, independent of
resolution or orientation. This value is plotted as the horizontal
line in Fig. 12. It is clear that probability summation provides
an excellent account of the difference between basis and noise
thresholds.
This is a useful observation since it provides a way to predict

thresholds for individual basis functions from uniform noise
thresholds. These may then be used to predict visibility of
noise produced by nonuniform quantization [2].

D. Gray-Scale Model
We have experimented with various models to express the

threshold for gray-scale DWT noise as a function of spatial
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TABLE III
PARAMETERS FOR DWT THRESHOLD MODEL FOR THE CHANNEL

Fig. 14. Thresholds for DWT uniform noise in and channels.

frequency and orientation. Each model was fit to all the gray-
scale noise data for observers gyy and sfl (a total of
103 thresholds). Parameters were optimized with respect to
the summed squared error in log . One model that provides
a reasonable fit is

(7)

This is a parabola in log versus log coordinates, with
a minimum at and a width of . The term shifts
the minimum by an amount that is a function of orientation,
and where . The term defines the minimum
threshold. The optimized parameters and rms error (of log
) are given in Table III. The fit is shown in Fig. 13.

E. Color Results
Fig. 14 shows results for observers sfl and abw at orien-

tations 1, 3, and 4. We did not collect data for orientation 2

Fig. 15. Model predictions for (bottom curve), (middle), and (top)
at each orientation for observer sfl.

TABLE IV
PARAMETERS FOR DWT THRESHOLD MODEL

(horizontal) because the gray-scale data suggest that it largely
duplicates the results from orientation 4 (vertical), and because
horizontal modulations are more subject to display limitations.
Data at 2, 4, and 8 cycles/degree were collected with a zoom of
4, at 16, zoom 2, and at 32, zoom 1. For all measurements,
stimulus was a DWT noise pattern, and display gamma 2.3.
The effects of spatial frequency and orientation are similar

to those evident in the gray-scale data. However, there is a
general elevation of all thresholds, by about a factor of two
for thresholds and about a factor of four for thresholds.
Observer abw is also somewhat less sensitive than observer sfl.

F. Color Model
We have applied the same model used for gray-scale thresh-

olds to the color thresholds in Fig. 14. We have fit the data
of each color channel separately. Also, because they clearly
differed in sensitivity, we have fit separately the data of the two
observers. The solid curves in Fig. 14 show the various fits.
The parameters are in Table IV, along with the parameters
from Table III.
To illustrate the differences between the model thresholds

for the three color channels, we plot them together in Fig. 15.
In this figure we have used and parameters from sfl,
who is considerably more sensitive than abw. The curve is
generally about a factor of two below the curve, which is
in turn about a factor of two below the curve, although this
difference declines at higher spatial frequencies, because the

curve is somewhat broader than or . This broadening
is likely due to the intrusion of a luminance detecting channel
at high frequencies and high contrasts. The wavelets do
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Fig. 16. Wavelets and their Fourier spectra at four orientations.

have a luminance component because the color axis is not
orthogonal to the human luminance axis.

G. Theoretical Account of Model Parameters
Although our interest in the threshold model is primarily

a practical one, we offer the following general explanation of
the estimated model parameters in Table IV. First, we note that
although the model is a parabola, all data collected lie to one
side of the parabola. This monotonic ascent of thresholds with
spatial frequency is consistent with two factors: i) the decline
of contrast sensitivity with increasing spatial frequency [30],
and ii) the decreasing size of our noise stimuli with increasing
spatial frequency. For the data, the parabola minimum is at
about 0.4 cycles/degree. This is similar to estimates obtained
for Gabor functions of fixed log bandwidth, which also decline
in size with spatial frequency [31].
The effects of orientation, manifest in the parameters

and , can be understood as follows. Fig. 16 depicts the
wavelets and their Fourier spectra at the four orientations. The
parameters and describe the thresholds for orientations 1
and 3 as frequency shifts relative to threshold for orientations
2 and 4. From the nature of dyadic wavelets, orientation 1
has a spectrum that is approximately a factor of two lower in
spatial frequency than orientations 2 or 4. This would suggest
a factor of . However, at orientation 1 the signal energy
is spread over all orientations, which we know to be less
visually efficient than to concentrate them at a narrow range,
as in the spectra for orientations 2 and 4. Thus, we expect a
slight increase in threshold, which can be mimicked by a slight
reduction in . Thus, the final prediction is slightly less than
2, which is what we obtain.
For orientation 3, two similar effects are at work. First,

because of the Cartesian splitting of the spectrum, the spatial
frequency is about above that of orientations 2 and 4,
yielding a prediction of . But here again the
spectrum is distributed over two orthogonal orientations (45
and 135 ), which should result in a log threshold increase
of about (a shift of ) or a total prediction of

, which is indeed just above what is
obtained. A third effect, the well-known oblique effect [32],
may contribute the final small amount of threshold elevation.

V. QUANTIZATION MATRICES
We now use the model developed above to compute quanti-

zation matrices for the linear-phase 9/7 DWT. The basic idea
is to construct a “perceptually lossless” quantization matrix by
using a quantization factor for each level and orientation that
will result in a quantization error that is just at the threshold of
visibility. Although the actual visibility of quantization errors
will depend upon the combined visibility of errors across the
various bands, this combination is typically quite inefficient,
the ensemble threshold is likely to be only slightly lower
than for any one band alone (see analogous arguments in
Section IV-C with respect to combination of errors across
space). For uniform quantization and a given quantization
factor , the largest possible coefficient error is . The
amplitude of the resulting noise is approximately .
(The approximation is because the amplitudes of individual
noise signals depend upon the particular noise sample, but as
noted above they are typically very close to the basis function
amplitudes.) Thus, we set

(8)

The basis function amplitudes are given for six levels
in Table V. Image compression applications do not typically
require more than this many levels, but additional amplitudes
may be approximated by noting that the ratio of magnitudes
of adjacent levels converges to two.
Combining (7), (8), and (2),

(9)

Table VI shows example matrices computed from this
formula.
Fig. 17 shows an example image uncompressed and com-

pressed using the quantization matrix of Table VI, and twice
that matrix. Viewed from the appropriate distance (23 inches,
approximately arm’s length), the quantization artifacts should
be invisible for the left image, and visible for the right
(examine the boundaries between each parrot and background).
Using typical entropy coding techniques, the resulting bit rates
for these two examples are 1.05 and 0.67 b/pixel.
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TABLE V
BASIS FUNCTION AMPLITUDES FOR A SIX-LEVEL LINEAR-PHASE 9/7 DWT

The quantization matrix is inevitably a function of the
display visual resolution, as is evident from (9). Fig. 18 shows
Y quantization factors for display visual resolutions of 16,
32, and 64 pixels/degree. These figures show that for low
visual resolution (16 pixels/degree), the quantization factors
are small and almost invariant with level and orientation. At
the middle resolution, typical of office viewing of desktop
computer images, the function is still a rather flat function
of level for all orientations except 3, which shows a large
elevation at the lowest level. At the highest visual resolution,
oblique, horizontal, and vertical factors are strong functions
of level, while the lowpass signal is still nearly invariant with
level.

VI. DISCUSSION AND EXTENSIONS

A. Downsampled Chromatic Channels
Because human sensitivity to chromatic variation is lower

than that to luminance variation at higher spatial frequencies,
it is common in DCT and DWT transform coding to down-
sample the chromatic channels. This is easily accommodated
in the current scheme, provided that the value of is altered
appropriately for the calculation of quantization matrices via
(9). For example, if the true display visual resolution is 32
pixels/degree, and chroma is downsampled by two in each
dimension, then the corrected value of is 16 pixels/degree.

B. Light Adaptation
The model developed above is fit to data collected at one

mean luminance. The , , and thresholds that we have
measured and computed are expressed in gray-scale units,
analogous to luminance and chromatic contrasts. Contrast
thresholds for both luminance and color wavelets are likely to
vary little with increasing mean luminance [33]. Thus, matrices
computed by the formulae presented here should be valid
over a wide range of display luminances, since variation in
overall display luminance will alter in proportion both the
signal luminance and the mean luminance, thus preserving
signal contrast. However, for a fixed display luminance, spatial
variations in the local mean luminance of the image will
produce local variations in visual thresholds [10]. At pho-
topic levels, thresholds will be roughly proportional to the
local mean. These variations can be accommodated by more
complex quantization matrix designs [34], and may also drive
spatially adaptive quantization schemes [35].

C. Masking and Adaptive Quantization
The thresholds measured above were for signals presented

against an otherwise uniform background. It is well known

TABLE VI
QUANTIZATION FACTORS FOR FOUR-LEVEL 9/7 DWT FOR 32 PIXEL/DEGREE

that thresholds rise when targets are presented against complex
backgrounds as a result of visual masking. It is for this rea-
son that wavelet quantization schemes often set quantization
factors according to the variance of the coefficients.
A thorough treatment of masking in the context of DWT

artifacts is beyond the scope of this paper, but we describe
here a simple way in which the threshold model may be used
to augment adaptive quantization schemes. One possibility is
to compute a measure of variance within a band that is scaled
by the visibility of signal within that band

(10)

where , is the visual threshold for a particular level and
orientation, expressed in units of the DWT coefficient. This
visually effective band variance might then be used to adjust
the band quantization factors, for example

(11)

Recent models of visual masking suggest that the visually
effective variance should be computed over a broad range
(perhaps all) orientations, but over only a limited range of
space and spatial frequency [36]–[38]. The expressions above
are easily altered to accommodate this idea, but herein we have
not contemplated quantization factors that differ over space.
While this might be valuable, it presents additional problems in
conveying the side information necessary to define the various
matrices, and to associate the various matrices with regions of
the image.
Another possible use of the coefficient thresholds is in the

context of a highly adaptive scheme such as that designed
for the DCT by Watson [18], [34], [39]. In that method, the
visibility of the total ensemble of actual quantization errors is
computed, based on a mathematical model of DCT uniform
quantization noise thresholds, and the quantization matrix is
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Fig. 17. Original image (top) and compressed with perceptually lossless DWT quantization matrix (bottom left) and twice that matrix (bottom right). Image
dimensions are 256 256 pixels. Quantization matrix is designed for a viewing distance of 23 in.

optimized to produce minimum perceptual error for a given
bit rate.

D. Other Wavelets
It is desirable to extend our model to thresholds for other

wavelets. This requires either empirical thresholds for the
wavelet in question, or a more general model of human visual
sensitivity. We and others are making efforts in the latter
direction [40], [41].

VII. CONCLUSIONS
We have measured visual thresholds for samples of uni-

form quantization noise of a DWT based on the linear-
phase 9/7 wavelet. Thresholds were collected for gamma-
corrected signals in the three channels of the color

Fig. 18. Quantization matrices for three display visual resolutions plotted as
functions of level, with orientation indicated by symbol markings.

space. We have constructed a mathematical model for the
thresholds, which may be used to design a simple “perceptually
lossless” quantization matrix, or which may be used to weight
quantization errors or masking backgrounds in more elaborate
adaptive quantization schemes. These perceptual data, mod-
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els, and methods may enhance the performance of wavelet
compression schemes.
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