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Perimetric Complexity of 
Binary Digital Images
Notes on Calculation and Relation to Visual 
Complexity
Andrew B. Watson

Perimetric complexity is a measure of the complexity of binary 
pictures. It is defined as the sum of inside and outside 
perimeters of the foreground, squared, divided by the foreground 
area, divided by 4 p. Difficulties arise when this definition is 
applied to digital images composed of binary pixels. In this 
article we identify these problems and propose solutions. 
Perimetric complexity is often used as a measure of visual 
complexity, in which case it should take into account the limited 
resolution of the visual system. We propose a measure of visual 
perimetric complexity that meets this requirement.

‡ Background
Perimetric  complexity  is  a  measure  of  the  complexity  of  binary  pictures.  It  is  defined as
the sum of inside and outside perimeters of the foreground, squared, divided by the fore-
ground  area,  divided  by  4 p.  The  concept  of  perimetric  complexity  was  first  introduced
(and called dispersion) by Attneave and Arnoult [1] in an effort to explain the apparent per-
ceptual complexity of visual shapes. In the field of image processing, the concept appears
as its inverse, compactness [2, 3, 4]. The concept was given new life (and a new name) in
2006 by Pelli et al., who showed that the efficiency of letter identification was nearly pro-
portional to perimetric complexity [5]. It has since become a popular metric in a variety of
shape  analysis  applications,  including  human  letter  identification  [5,  6,  7],  handwriting
recognition [8], evolution of graphical symbols [9], and design of graphical anti-spam tech-
nologies [10, 11, 12].
In this article we develop Mathematica functions to compute perimetric complexity of bi-
nary digital images and illustrate their application. The code is compatible with Version 8
of Mathematica.
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Although the concept of perimetric complexity is clear when applied to continuous plane
shapes, complications arise when the concept is extended to binary digital images. We dis-
cuss these complications and suggest suitable solutions. We also introduce the concept of
visual perimetric complexity, which takes into account the blurring action of the human vi-
sual system. 
We begin by illustrating the application of the function PerimetricComplexity to a
binary image.

cat = ;

PerimetricComplexity@catD

82110.08, 89 588, 3.95494<

The output is a list containing the perimeter (in pixels), the area (in square pixels), and the
complexity.  In the following sections we describe the derivation of this function, as well
as the options that may be used to control its operation.

‡ Perimetric Complexity of Geometric Shapes
Perimetric  complexity  is  a  measure  of  the  complexity  of  binary  pictures.  In  a  binary
picture,  one  or  several  regions  of  the  same  color  (white)  are  defined  as  foreground,  and
the remainder (black) as background. Perimetric complexity C  is defined here as the sum
of  the  inside  and  outside  perimeters  of  the  foreground  P,  squared,  divided  by  the  fore-
ground area A, divided by 4 p:

(1)C =
P2

4 p A
.

In the remainder of this article, unless otherwise noted, we use the term complexity as syn-
onymous with perimetric complexity.
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We begin with the example of a circular disk with unit radius. 

Graphics@8White, Disk@D<, PlotRange Ø 2, Background Ø BlackD

Here the perimeter is 2 p and the area is p, so the complexity is

(2)C =
H2 pL2

4 p p
= 1.

It can be shown that the disk is the shape with the lowest complexity. The normalizing con-
stant  4 p  in  the  definition  leads  to  a  unit  value  for  this  most  simple  shape.  As  a  conse-
quence, any other value of complexity is easily compared to that of the circular disk. Pelli
et  al.  [5]  suggest  that  complexity  is  closely  related  to  the  number  of  visual  features  in  a
shape. In that sense, we could say that the circular disk has only a single feature.
Our next example is a square with unit sides.

The perimeter here is 4, and the area is 1, so the perimetric complexity is

(3)C =
42

4 p
=

4

p
º 1.27.

If we add a square hole in the center with side length 1/2, there is an interior perimeter as
well, as shown here.

Graphics@8
White, Rectangle@-81, 1< ê 2, 81, 1< ê 2D,
Black, Rectangle@-81, 1< ê 4, 81, 1< ê 4D<,

PlotRange Ø 1, Background Ø BlackD

Now the total perimeter is the sum of inner and outer perimeters and the area is the differ-
ence in areas of the squares, so
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Now the total perimeter is the sum of inner and outer perimeters and the area is the differ-
ence in areas of the squares, so

(4)C =
H4+ 2L2

H1- 1 ê 4L 4 p
=

12

p
º 3.82.

So according to this measure, the square with a hole is about three times as complex as the
square.
Some important observations about complexity are: (1) it is dimensionless; (2) it is inde-
pendent  of  scale  or  orientation;  and  (3)  it  is  additive.  By  additive  we  mean  that  the
complexity of a pair of shapes, considered as a single shape, is equal to the sum of their
complexities computed separately.

‡ Perimetric Complexity of Plane Curves
Although it is beyond the scope of this article, we note for reference that if a shape is de-
fined  by  a  closed  parametric  curve,  its  exact  complexity  can  be  obtained  using  calculus
methods  [13].  Specifically,  if  over  an  interval  a § t § b  the  functions  xHtL  and  yHtL  and
their derivatives x° HtL and y° HtL are continuous, then the curve described has a length 

(5)P = ‡
a

b
x° 2 + y° 2 dt

and an area

(6)A = -‡
a

b
y° x dt.

‡ Perimetric Complexity of Binary Digital Images
A digital image is defined here as a rectangular array of square pixels. A binary digital im-
age contains pixel values of 1 (white) and 0 (black) only. The foreground consists of the
white pixels. 
The original definition of complexity relies upon the notion of a perimeter, which has no
unique analog in the context of digital images. However, two definitions of perimeter are
available, as described below. 
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· Using “PerimeterLength”

The first definition we consider is the most straightforward. Consider a binary image con-
sisting of a single white pixel.

ImagePad@Image@881<<D, 1D

It  seems  natural  to  define  the  perimeter  of  this  shape  as  4  (pixels),  and  the  area  as  1

(pixel2), so C = 4 ê p, the same as the square discussed earlier.

Now consider this shape consisting of 3 white pixels.

ImagePad@Image@881, 0<, 81, 1<<D, 1D

Here  the  perimeter,  consisting  of  the  exposed  pixel  faces,  is  8,  and  the  area  is  3,  so
C = 16 ê H3 pL.
Extending this idea, we can define the perimeter as the sum of the exposed faces of pixels
in the foreground.
Version 8 of Mathematica includes a set of functions from the discipline of mathematical
morphology.  These  can  be  used  to  easily  calculate  perimetric  complexity.  To  illustrate
this we begin with a binary image with several separated parts.

yi = ;

The  MorphologicalComponents  function  finds  connected  regions  and  labels  them
with  integers.  The  Colorize  function  visualizes  these  regions  by  assigning  colors  to
each  label.  The  CornerNeighbors Ø False  option  ensures  that  only  4-connected
neighborhoods are considered.

MorphologicalComponents@yi, CornerNeighbors Ø FalseD êê

Colorize

The ComponentMeasurements function returns a selected set of measurements about
each region. In this case we are interested in the area and the perimeter length. The results
are returned as a set of rules, showing the results for each region. 
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The ComponentMeasurements function returns a selected set of measurements about
each region. In this case we are interested in the area and the perimeter length. The results
are returned as a set of rules, showing the results for each region. 

cm = ComponentMeasurements@
MorphologicalComponents@yi, CornerNeighbors Ø FalseD,
8"PerimeterLength", "Count"<, CornerNeighbors Ø FalseD

81 Ø 856, 98<, 2 Ø 8198, 469<, 3 Ø 8138, 371<<

We can combine the perimeters and areas of the several regions, and then compute com-
plexity in the usual way.

Total@Last êü cmD

8392, 938<

% @@1DD^2 ê %@@2DD ê H4 PiL êê N

13.0365

The  preceding  calculations  are  implemented  in  the  function  PerimetricComÖ
plexity, defined in the Appendix. We can obtain the previous result.

PerimetricComplexity@yi, Filter Ø None,
Method Ø "PerimeterLength"D êê N

8392., 938., 13.0365<

A  list  is  returned,  containing  the  perimeter,  the  area,  and  the  complexity.  The  option
Method Ø "PerimeterLength"  ensures  that  we  use  the  definition  of  perimeter  de-
scribed above. The option Filter Ø None is explained later.
For  future  reference,  to  distinguish  it  from  variants  that  we  consider,  we  call  this  the
“raw”  perimetric  complexity.  Thus  the  same  result  can  be  obtained  with  the  option
Method Ø "Raw".

PerimetricComplexity@yi, Method Ø "Raw"D êê N

8392., 938., 13.0365<
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· Using “PolygonalLength”

The second definition of the perimeter of a connected region in a binary digital image is to
consider the perimeter pixel centers as points on a lattice, and to define the length as the
sum of the sides of the polygon defined by those points. This estimate of the perimeter is
obtained  from  ComponentMeasurements  by  using  the  measurement  "PolyÖ
gonalLength ".

cm = ComponentMeasurements@
MorphologicalComponents@yi, CornerNeighbors Ø FalseD,
8"PolygonalLength", "Count"<, CornerNeighbors Ø FalseD

81 Ø 839.6985, 98<, 2 Ø 8159.439, 469<, 3 Ø 8117.012, 371<<

Note that the measures of perimeter length are smaller than before.

And again complexity can be easily computed.

N@Ò @@1DD^2 ê Ò@@2DD ê H4 PiLD &üTotal@Last êü cmD

8.47953

This variant of perimetric complexity is implemented with the following options.

PerimetricComplexity@yi, Filter Ø None,
Method Ø "PolygonalLength"D êê N

8316.149, 938., 8.47953<

Or, since Method Ø "PolygonalLength" is the default, the input can be simplified.

PerimetricComplexity@yi, Filter Ø NoneD êê N

8316.149, 938., 8.47953<

‡ Approximating Complexity of Continuous Shapes
We introduced the concept  of  perimetric  complexity  with a  few continuous shapes,  such
as a square and a circle. In these cases, complexity is easily calculated, because we have
simple  formulas  for  the  area  and  perimeter.  It  might  be  imagined  that  complexity  of  the
continuous shape could be approximated by computing the complexity of a discrete sam-
pled  image,  rendered  from  the  shape.  As  we  shall  see,  this  assumption  is  not  strictly
correct.
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Consider the circular disk. As noted at the beginning, it has C = 1. 

disk = Graphics@8White, Disk@D<, Background Ø BlackD

We set the foreground color to white, as is our convention. Now we consider an image ren-
dered from the continuous shape. We render it into a certain size image. 

size = 2^7 + 1;
diskimage = Image@ disk, "Bit", ImageSize Ø 81, 1< size,

ColorSpace Ø "Grayscale"D

If we compute the complexity, we find that it is 62% too large relative to the continuous
shape.

PerimetricComplexity@diskimage, Method Ø "Raw"D êê N

8492., 11 873., 1.62241<

The reason is that the sampled image is actually more complex than the continuous shape.
Its contour is jagged, while that of the continuous shape is smooth. It might be imagined
that  this  could  be  remedied by increasing the  resolution of  the  rendering.  Here  we show
that belief is misplaced. We render at several sizes and plot the results. Size has little ef-
fect, and the complexity never approaches the value of 1 corresponding to the continuous
shape.
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points = Table@
8size = 2^k + 1,
PerimetricComplexity@

Image@ disk, "Bit", ImageSize Ø 81, 1< size,
ColorSpace Ø "Grayscale"D

, Method Ø "Raw"D@@3DD<
, 8k, 4, 12<D;

ListLogLinearPlot@points, PlotRange Ø 81, Automatic<,
Frame Ø True, FrameLabel Ø 8"Size", "Complexity"<,
Joined Ø TrueD
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This  problem can be  somewhat  ameliorated  by using the  PolygonalLength  measure
of perimeter length. Rather than the pure approach of measuring the exposed face of each
foreground pixel, this measures the length of the contour that travels between the centers
of those pixels.

PerimetricComplexity@diskimage, Filter Ø None,
Method Ø "PolygonalLength"D

8403.647, 11 873, 1.09203<

Now the difference is  reduced to 9%. Here again,  the reader might think that  this differ-
ence could be  reduced to  zero by enlarging the  resolution (number  of  pixels)  in  the  ren-
dered image, but this is not so. We leave that as an exercise for the reader. The error can
never be zero, because the path between pixel centers must always be vertical, horizontal,
or diagonal, so it can never smoothly follow the true circular contour. Put another way, it
has a higher fractal dimension than the circle, and thus greater length.
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Now the difference is  reduced to 9%. Here again,  the reader might think that  this differ-
ence could be  reduced to  zero by enlarging the  resolution (number  of  pixels)  in  the  ren-

never be zero, because the path between pixel centers must always be vertical, horizontal,
or diagonal, so it can never smoothly follow the true circular contour. Put another way, it
has a higher fractal dimension than the circle, and thus greater length.

‡ Pelli Algorithm
Pelli et al. [2] proposed a method for computing complexity that we quote here in full:

The ink area is the number of 1’s. To measure the perimeter we first replace the
image by its outline. (We OR the image with translations of the original, shifted
by one pixel left; left and up; up; up and right; right; right and down; down; and
down  and  left;  and  then  bit  clear  with  the  original  image.  This  leaves  a  one-
pixel-thick outline.) It might seem enough to just count the 1’s in this outline im-
age, but the resulting “lengths” are not Euclidean: diagonal lines have “lengths”
equal to that of their base plus height. Instead we first thicken the outline. (We
OR  the  outline  image  with  translations  of  the  original  outline,  shifted  by  one
pixel left; up; right; and down.) This leaves a three-pixel-thick outline. We then
count the number of 1’s and divide by 3.

This method can be implemented using the Dilation  function, as we show here. With
verbose ã True, it shows two images: the perimeter in red and the thickened perime-
ter. It returns the length of the perimeter, the area, and the complexity.

PelliMethod@image_, verbose_: FalseD := Module@
8tmp0, tmp1, tmp2, tmp3, perimeter, area, result<,
tmp0 = ImagePad@image, 2D;
tmp1 = Dilation@tmp0, BoxMatrix@1DD;
tmp2 = ImageSubtract@tmp1, tmp0D;
tmp3 = Dilation@tmp2, CrossMatrix@1DD;
perimeter = Total@ImageData@tmp3D, 2D ê 3;
area = Total@ImageData@tmp0D, 2D;
result = 8perimeter, area, perimeter^2 ê area ê H4 PiL<;
If@verbose, Column@8GraphicsRow@

8ColorCombine@8tmp1, tmp0, tmp0<D, tmp3<D, result<D,
resultD

D

 We apply this to the three-component Chinese character.

PelliMethod@yi, TrueD êê N

8326.333, 938., 9.03463<
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The raw method gives the following.

PerimetricComplexity@yi, Method Ø "Raw"D êê N

8392., 938., 13.0365<

We see that the perimeter is substantially underestimated by the Pelli method in this case.
This method has other limitations. It effectively assumes regions that are large in pixel di-
mensions. For example, consider the case of a single pixel object. As noted above, it has
C = 4 ê p º 1.273.  But  the  Pelli  method yields  a  complexity  value  more  than three  times
too large.

test = ImagePad@Image@881<<, "Bit"D, 3D

PelliMethod@test, TrueD êê N

87., 1., 3.8993<

‡ Visual Perimetric Complexity
Much of the motivation for the use of perimetric complexity is the hope that it might pro-
vide  an  approximate  measure  of  the  visually  perceived  complexity  of  shapes.  But  this
only makes sense if the shape is actually visible. Consider the difference between the con-
tinuous circular disk and its sampled image, as discussed above. They have different peri-
metric  complexities,  no  matter  how  high  the  resolution  of  the  sampled  version.  But  of
course, at a certain viewing distance, they are indistinguishable.

· Filtering

Here we propose an approach to dealing with this problem. The idea is to first blur the im-
age, in a manner consistent with visual blur, and then compute perimetric complexity. To
make things simple, we use Gaussian blur, although this is not an accurate description of
human visual blur. Later we show a more accurate form of blur. We begin with the exam-
ple of a Chinese character jun ( ).

We  pad  the  image  slightly,  so  that  the  blur  is  contained,  and  then  magnify,  to  allow
greater flexibility in the filtering. Then we blur the image, in this case by a Gaussian filter
with a radius of 8 pixels.
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We  pad  the  image  slightly,  so  that  the  blur  is  contained,  and  then  magnify,  to  allow
greater flexibility in the filtering. Then we blur the image, in this case by a Gaussian filter
with a radius of 8 pixels.

tmp0 = ImagePad@jun, 5D;
mag = 4;
tmp1 = ImageResize@tmp0, mag ImageDimensions@tmp0DD;
tmp2 = GaussianFilter@tmp1, 8D

Then we binarize the image. Unfortunately, this requires some method of setting the thresh-
old. Here we use a fixed threshold of 0.5. We use ImageAdjust  to ensure that the fil-
tered image is amplified to fill the grayscale range before thresholding.

tmp3 = Binarize@ImageAdjust@tmp2D, 0.5D
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And because we imagine that the image is viewed at such a distance that the pixels are not
resolved, we use the (default) PolygonalLength method.

PerimetricComplexity@tmp3, Filter Ø NoneD

81944.82, 24 044, 12.5182<

We can compare this to the unfiltered raw complexity.

PerimetricComplexity@jun, Method Ø "Raw"D êê N

8606., 1467., 19.9207<

The filtered version has substantially lower complexity, as we expect.

· Visual Filtering Using a Gaussian

For the filtering to approximate visual blur, it must be based on the size of the original im-
age and its distance from the viewer. Obviously, as the shape becomes smaller or farther
from the observer,  its  details  are more blurred,  less visible,  and contribute less to the vi-
sual complexity.
The  challenge  is  to  determine  the  appropriate  value  of  the  Gaussian  filter  radius  for  a
given  viewing  distance.  From  measurements  of  visual  sensitivity,  we  know  that  visual
Gaussian blur has a standard deviation of about B = 0.01549 degrees of visual angle [11].
But we need to convert this into a radius in pixels.  Recall that the image may be magni-
fied by M  before filtering. If we express the viewing distance V  in terms of pixels (before
magnification), then the size of each pixel S (after magnification) is approximately

(7)S =
57.3

MV
deg.

The constant 57.3 is an approximation to 1 ê arctanH1°L. 

1. ê ArcTan@1 °D

57.3016

By default, the radius is twice the standard deviation. So the filter radius should be

(8)R =
2 B

S
=

2 BMV

57.3
pixel.
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Consider an example. Suppose that our Chinese character image is displayed on a typical
computer screen with a resolution of 72 pixels/inch, and viewed at a distance of 48 inches.

V = 48 µ 72

3456

Recall the value of B.

B = 0.01549;

Suppose further that the magnification is 4.

M = 4;

Then we know R.

R = 2 B M V ê 57.3

7.47413

We now proceed with the steps outlined above for filtering.

tmp0 = ImagePad@jun, 1D;
tmp1 = ImageResize@tmp0, M ImageDimensions@tmp0DD;
tmp2 = GaussianFilter@tmp1, RD;
tmp3 = Binarize@ImageAdjust@tmp2D, 0.5D
PerimetricComplexity@tmp3, Filter Ø NoneD

81987.85, 23 932, 13.1395<

The  preceding  steps  of  padding,  magnification,  and  filtering  are  built  into  the  function
PerimetricComplexity,  as  shown  below.  With  Verbose Ø True,  the  function
also shows the original, the filtered version, the binarized version, and the original (in red)
with the perimeter of the filtered version (in white within the original and aqua outside the
original). 
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The  preceding  steps  of  padding,  magnification,  and  filtering  are  built  into  the  function
PerimetricComplexity,  as  shown  below.  With  Verbose Ø True,  the  function
also shows the original, the filtered version, the binarized version, and the original (in red)
with the perimeter of the filtered version (in white within the original and aqua outside the
original). 

PerimetricComplexity@jun, Magnification Ø 4,
Filter Ø "Gaussian", ViewingDistance -> 48 µ 72,
Verbose Ø TrueD

81987.85, 23 932, 13.1395<

The Gaussian is parameterized by a scale in degrees of visual angle. The default value is
2.33/60  degrees.  The  user  can  experiment  with  different  values  via  the  option
GaussianScale.

· Accurate Visual Filtering with Sech

Visual  blur  is  more  accurately  represented  with  filters  other  than  a  Gaussian.  In  one
simple form, the kernel is a sech (hyperbolic secant) function [14, 15].  This filter can be
selected  with  an  option  (Filter Ø "Sech",  the  default)  in  the  function  PerimeÖ
tricComplexity.

PerimetricComplexity@junD

81016.14, 5977, 13.7472<

The hyperbolic secant is parameterized by a scale in degrees of visual angle. The default
value is 2.16/60 degrees [14, 15]. The user can experiment with different values via the op-
tion SechScale.

· Accurate Visual Filtering with an Arbitrary Point Spread Function

In real human eyes, blur results not only from low-order aberrations such as defocus and
astigmatism,  but  also  from  higher-order  aberrations.  In  this  example,  we  use  a  blur
function  defined  by  an  array  of  values  representing  the  filter  kernel.  This  example  is  an
actual  estimate  of  the  point  spread  function  for  an  individual  human  observer,  as  mea-
sured using a device called a wavefront aberrometer that includes both low-order and high-
order aberrations [16].
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ImageAdjust@Image@psfDD

We can use this blur kernel by supplying it directly to the Filter option.

PerimetricComplexity@jun, Verbose Ø True, Filter Ø psf,
Magnification Ø 3D

8851.855, 14 959, 3.86028<

In the above calculation we used a magnification of 2. We do not address this topic in de-
tail,  but  when  a  kernel  is  supplied,  the  pixels  of  the  kernel  and  of  the  magnified  image
must be of the same size, in degrees of visual angle, for the filter to be accurate. The size
of the magnified pixels in degrees depends upon the viewing distance and the magnifica-
tion, as described above.

· Magnification Parameter

The  Magnification  parameter  should  be  set  with  a  value  that  ensures  that  a  filter
kernel, if present, has enough pixels in it to adequately represent the filter. For the Sech
filter, we generally want a width of least three times the scale, and at least 8 pixels. This
means that for the magnification,

(9)M ¥
8 µ 57.3

3 V B
.

This  rule  is  effectively  implemented  by  the  default  Magnification Ø Automatic
option.

· Binarization

After applying visual blur, it is necessary to binarize the image before calculating the peri-
metric  complexity.  There  are  many  ways  to  binarize  an  image  and  Mathematica  offers
many of them as options. The simplest is to use a fixed threshold. Since our images are ini-
tially defined as 0 or 1, a natural choice of threshold is 0.5. One drawback of this choice is
that as images become severely blurred, no pixels may remain that exceed the threshold.
From  a  perceptual  point  of  view,  the  mean  might  appear  a  reasonable  choice.  As  the
image blurs, all pixels revert towards the mean, but some always remain above the mean
until  a  uniform image is  reached.  A drawback of  the mean is  that  it  is  influenced by the
area  of  the  background.  For  this  reason,  we  adopt  the  fixed  value  of  0.5  as  the  default
threshold for binarization.

16 Andrew B. Watson

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.



After applying visual blur, it is necessary to binarize the image before calculating the peri-
metric  complexity.  There  are  many  ways  to  binarize  an  image  and  Mathematica  offers

tially defined as 0 or 1, a natural choice of threshold is 0.5. One drawback of this choice is
that as images become severely blurred, no pixels may remain that exceed the threshold.
From  a  perceptual  point  of  view,  the  mean  might  appear  a  reasonable  choice.  As  the
image blurs, all pixels revert towards the mean, but some always remain above the mean
until  a  uniform image is  reached.  A drawback of  the mean is  that  it  is  influenced by the
area  of  the  background.  For  this  reason,  we  adopt  the  fixed  value  of  0.5  as  the  default
threshold for binarization.
We  should  acknowledge  that  a  more  valid  visual  thresholding  scheme  might  be  devised
that better reflects our perceptual segregation of areas into light and dark. This is a topic
for future research.
It should also be acknowledged that for severely blurred images, considerable grayscale in-
formation remains that is lost in binarization. Thus we should question whether perimetric
complexity is an appropriate measure for such images. 
To illustrate that problem, we show an example of a character viewed at 10 feet on a dis-
play with 100 pixels/inch. Note that the blurred image displays internal grayscale structure
that is not conveyed by the binarized version.

PerimetricComplexity@jun, ViewingDistance Ø 10 µ 12 µ 100,
Verbose Ø TrueD

8195.782, 1706, 1.78795<

· Viewing Distance

For  a  given  shape,  complexity  declines  with  viewing  distance  as  a  result  of  visual  blur.
Here  we  illustrate  this  effect  with  an  example  Chinese  character.  First  we  find  the  raw
complexity.

raw = PerimetricComplexity@jun, Method Ø "Raw"D@@3DD êê N

19.9207

Now we compute complexity for viewing distances ranging from 3 inches to 10 feet, as-
suming a display with a resolution of 100 pixels/inch. For reference, we show as red lines
the raw complexity and the theoretical limit of 1 (a circular disk). As it should, the visual
complexity proceeds from one of these limits to the other as distance increases.
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8min, max< = 83, 10 µ 12<;
points =

8Ò, PerimetricComplexity@jun, ViewingDistance Ø Ò 100D@@
3DD< & êü Range@min, max, 3D êê N;

ListPlot@points, Frame Ø True, Joined Ø True,
Epilog Ø 8Red, Line@88min, raw<, 8max, raw<<D,

Line@88min, 1<, 8max, 1<<D<,
PlotRange Ø 880, Automatic<, 80, 22<<,
PlotStyle Ø Blue, Axes Ø False,
FrameLabel Ø 8"Distance HinchesL", "Complexity"<D
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At very small viewing distances (in pixels) the blur has little effect on each pixel, so the vi-
sual  complexity  approaches  the  raw  value.  As  a  rule  of  thumb,  this  asymptote  is  ap-
proached when the size of each pixel exceeds 1/4 degree.
It is reassuring to know that the algorithm does approach the correct asymptote as distance
increases. Here we show the intermediate images for a case of extreme blur (distance = 30
feet).

PerimetricComplexity@jun, Verbose Ø True,
ViewingDistance Ø 30 µ 12 µ 100D

8158.811, 1801, 1.11439<
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But a  note of  caution is  warranted.  Consider  the effect  of  distance on our other  example
character  yi  ( ).  We  show  it  here  along  with  the  previous  plot.  Note  that  the  curves

cross,  so  that  at  large  distances  (large  blurs)  the  “simpler”  character  becomes  the  more
complex of the two.

points2 =
8Ò, PerimetricComplexity@yi, ViewingDistance Ø Ò 100D@@

3DD< & êü Range@min, max, 3D êê N;
ListPlot@8points, points2<, Frame Ø True, Joined Ø True,
Epilog Ø 8Red, Line@88min, raw<, 8max, raw<<D,

Line@88min, 1<, 8max, 1<<D<,
PlotRange Ø 880, Automatic<, 80, 22<<,
PlotStyle Ø 8Blue, Green<, Axes Ø False,
FrameLabel Ø 8"Distance HinchesL", "Complexity"<D
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This makes sense, since the densely packed features of the “complex” character blur onto
each other, while the more widely separated features of the “simple” character remain dis-
tinct. This is illustrated in the following, which shows the intermediate images for the two
characters when highly blurred (distance = 10 feet).

PerimetricComplexity@Ò, ViewingDistance Ø 10 µ 12 µ 100,
Verbose Ø TrueD & êü 8jun, yi<

:

8195.782, 1706, 1.78795<

,

>
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8274.551, 1022, 5.8693<

>

But the conclusion we must draw is that even the relative  complexity of different shapes
cannot be known without specifying the viewing distance.
We  use  the  quantity  ViewingDistance Ø 48 ê ArcTan@1 °D  as  a  default  value.
This corresponds to a visual resolution of 48 pixels/degree. It is a commonly encountered
resolution, about that achieved by a display with 100 pixels/inch viewed from 27 inches.
But  in  actual  use,  it  is  advised  to  use  the  actual  viewing  distance  rather  than  relying  on
this default.
Here  is  a  Manipulate  that  lets  you  experiment  with  different  viewing  distances.  The
complexity and the diagnostic images are shown. 

Manipulate@
Column@8TextüRow@8"complexity = ", Ò@@3DD êê N<D,

GraphicsRow@Ò@@4DD, ImageSize Ø 400D<,
Alignment Ø CenterD &ü

PerimetricComplexity@jun, ReturnImages Ø True,
ViewingDistance Ø inches 100D,

8inches, 1, 200, Appearance Ø "Labeled"<,
SaveDefinitions Ø TrueD

inches 1

complexity = 19.6603
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‡ Recommended Practice
In  general,  we  recommend  using  the  function  with  default  parameters,  shown  here  as  a
reminder.

Options@PerimetricComplexityD

8Magnification Ø Automatic, Pad Ø Automatic, Verbose Ø False,
Threshold Ø 0.5, Method Ø PolygonalLength, Filter Ø Sech,
Normalized Ø True, ViewingDistance Ø 2750.48,
MorphologicalOperators Ø True, SechScale Ø 0.036,
GaussianScale Ø 0.0388333, ReturnImages Ø False<

The  only  option  that  should  be  specified  for  the  typical  use  of  this  function  is
ViewingDistance. This specifies the distance from the eye to the image in pixels. The
default  is  ViewingDistance Ø 2750.48,  consistent  with  a  display having 96 pixel-
s/inch viewed at 28.65 inches (equal to a display with 48 pixels/degree of visual angle). 
It is difficult to imagine a case in which vision, in some form, would not be used to view
the shape in  question.  If  such a  case arises,  however,  the  “raw” complexity  can be mea-
sured with the following options.

SetOptions@PerimetricComplexity, Method -> "Raw"D

8Magnification Ø Automatic, Pad Ø Automatic,
Verbose Ø False, Threshold Ø 0.5, Method Ø Raw,
Filter Ø Sech, Normalized Ø True, ViewingDistance Ø 2750.48,
MorphologicalOperators Ø True, SechScale Ø 0.036,
GaussianScale Ø 0.0388333, ReturnImages Ø False<

This is also an appropriate measure when the pixels are very large (larger than 1/4 degree).

When trying to approximate the raw complexity of a continuous shape by means of a sam-
pled representation (e.g., a circle via an image of a circle), the following options yield the
lowest error. But as noted above, the error is still significant.

SetOptions@PerimetricComplexity, Filter Ø NoneD

8Magnification Ø Automatic, Pad Ø Automatic,
Verbose Ø False, Threshold Ø 0.5, Method Ø Raw,
Filter Ø None, Normalized Ø True, ViewingDistance Ø 2750.48,
MorphologicalOperators Ø True, SechScale Ø 0.036,
GaussianScale Ø 0.0388333, ReturnImages Ø False<
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‡ Examples
We conclude with two examples of the application of PerimetricComplexity.

The  first  example  is  a  set  of  three  binary  images.  Below  each  image  we  print  the
complexity.

pictures = 8cat, horse, family<;

Grid@
8pictures,
TextüStyle@NumberForm@Last@NüPerimetricComplexity@ÒDD,

3D, 14D & êü pictures<
, ItemSize Ø 10, Spacings Ø 2D

3.95 8.62 22.1

The second example is an array of characters. This array was created as part of an experi-
ment on the effect of complexity on visual acuity [6]. The first row is the Sloan letters, a
well-known set of letter acuity targets [5]. The remaining six rows are sets of Chinese char-
acters selected so as to be of equal complexity within a row, but increasing in complexity
from row to row [6]. The metric of complexity used for selection was different from that
developed in this article.

GraphicsGrid@chararrayD
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We first apply the function to each character and plot the results, with a different curve for
each set.

c = Map@Last@PerimetricComplexity@ÒDD &, chararray, 82<D;
ListLinePlot@c, PlotRange Ø 88.7, 10.3<, 80, 18<<,
FrameLabel Ø 8None, "Complexity"<D
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The plot shows that there is considerable variation in each set. If we take the mean of each
set we see a progression in complexity, except for the last  three sets.  In the next graphic
we show at the bottom an exemplar from each set.

ListLinePlot@Mean êü c, Mesh Ø Full,
PlotRange Ø 88.7, 7.3<, 80, 15<<,
Epilog Ø
8Table@Inset@chararray@@k, 1DD, 8k , .1<, Scaled@8.5, 0<D,

.6D, 8k, 7<D<,
FrameLabel Ø 8None, "Complexity"<D
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‡ Conclusion
We have illustrated several different methods for computing the perimetric complexity of
binary  digital  images.  These  methods  differ  in  how  they  compute  the  perimeter  and  in
whether the image is blurred and binarized before the complexity calculation. We have in-
troduced the concept of visual perimetric complexity and argued that in general it requires
blur  for  a  sensible  estimate.  We have  described  several  methods  of  implementing  visual
blur. 
The  computed  value  of  visual  perimetric  complexity  depends  somewhat  upon  details  of
the calculation, such as the presumed magnitude and nature of visual blur, and the binariza-
tion threshold. In this regard, we have proposed a set of standard default settings and proce-
dures for calculation of visual perimetric complexity.
We have also made the observation that visual perimetric complexity cannot be estimated
without  specifying  the  resolution  of  the  display  and  the  viewing  distance.  As  a  general
rule, the visual perimetric complexity approaches the raw complexity when the width of a
pixel exceeds 1/4 degree of visual angle. 

‡ Appendix

· Functions

Here we define several functions based on the derivations presented above.

ü PerimetricComplexity

Options@PerimetricComplexityD =
8Magnification Ø Automatic, Pad Ø Automatic,
Verbose Ø False, Threshold Ø 0.5,
Method Ø "PolygonalLength", Filter Ø "Sech",
Normalized Ø True, ViewingDistance Ø 48 ê ArcTan@1. °D,
MorphologicalOperators Ø True, SechScale Ø 2.16 ê 60,
GaussianScale Ø 2.33 ê 60, ReturnImages Ø False<;
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PerimetricComplexity::usage =
"PerimetricComplexity@image_,opts___RuleD computes

the perimetric complexity of a binary image.
Perimetric complexity is defined as the square
of the sum of inner and outer perimeters
divided by the foreground area, divided by
4p. By default, foreground pixels are white
H1L. The function returns a list: 8perimeter,
area, complexity<. Optionally, the image can
be filtered and thresholded before calculation
of complexity, to provide a better estimate
of the visual complexity of the image. Options
available are Pad Hwidth of padding to add
around imageL, Magnification Hfactor by which
to magnify each pixel before calulation of
complexityL, Method H\"PerimeterLength\",
\"PolygonalLength\", or \"Raw\", the method
used to compute the perimeterL, Threshold Ha
numerical threshold, or the method to use in
thresholding operations after filteringL, and
Filter HNone: no filter, \"Gaussian\" for
Gaussian filter, \"Sech\" for a hyperbolic
secant filter, or an array supplied directly
as the filter kernel. For the Gaussian and
the Sech, the size of the filter is determined
by the ViewingDistance optionL, ViewingDistance
Hin pixels, used to determine the radius of
Gaussian and Sech filtersL, MorphologicalOperators
Hwhether to use Mathematica's built-in
operatorsL, Normalized Hwhether to normalize
complexity by the value for a disk, 4pL. When
the Method->\"Raw\" option is used, the filter
is set to None.";
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PerimetricComplexity@image_, opts___RuleD := Module@
8tmp, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, plength,
area, mag, radius, pad, verbose, fdim, pc, norm,
threshold, method, filter, vdist, pixelsperdegree,
sechpixels, sechdegrees, morpho, sechscale, gscale,
anglescale, rimages, images, result<,

8mag, pad, verbose, threshold, method, filter, norm,
vdist, morpho, sechscale, gscale, rimages< =

8Magnification, Pad, Verbose, Threshold, Method,
Filter, Normalized, ViewingDistance,
MorphologicalOperators, SechScale, GaussianScale,
ReturnImages< ê. 8opts< ê.

Options@PerimetricComplexityD;

If@method === "Raw",
Hfilter = None; method = "PerimeterLength"LD;

anglescale = ArcTan@1. DegreeD;
If@mag === Automatic , mag = Switch@filter

, None, 1
, _?ListQ, 1
, "Gaussian", Ceiling@2. ê Hvdist anglescale gscaleLD
, "Sech", Ceiling@3. ê Hvdist anglescale sechscaleLD

DD;
pixelsperdegree = mag vdist anglescale;
sechpixels = Ceiling@pixelsperdegree 3 sechscaleD;
If@pad === Automatic,
pad = If@filter === None, 2,

Ceiling@pixelsperdegree sechscaleDDD;
If@EvenQ@sechpixelsD, sechpixels++D;
sechdegrees = sechpixels ê pixelsperdegree;
radius = 2 gscale pixelsperdegree ê Sqrt@2 PiD;
tmp0 = Binarize@imageD;
tmp1 =
If@mag > 1, ImageResize@tmp0, mag ImageDimensions@tmp0DD,
tmp0D;

tmp2 = ImagePad@tmp1, padD;
tmp4 = ImageAdjust ü Switch@filter

, None, tmp2
, _?ListQ, ImageConvolve@tmp2, filterD
, "Gaussian", GaussianFilter@tmp2, radiusD
, "Sech",
ImageConvolve@tmp2, SechKernel2D@sechpixels 81, 1<,

sechdegrees 81, 1<, sechscaleDD
D;
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tmp5 = If@ImageType@tmp4D === "Bit", tmp4,
If@NumericQ@thresholdD, Binarize@tmp4, thresholdD,
Binarize@tmp4, Method Ø thresholdDDD;

8plength, area< = If@morpho,
Total@
Last êü
Htst = ComponentMeasurements@

MorphologicalComponents@tmp5D, 8method, "Count"<,
CornerNeighbors Ø FalseDLD

,
8PerimeterLength@tmp5,

Switch@method, "PerimeterLength", PixelBorderLength,
"PolygonalLength", PixelPathLengthDD,

Total@ImageData@tmp5D, 2D<D;
H*Print@"mag = ",mag, " ppd = ",pixelsperdegree,

" sechpixels = ",sechpixels," pad = ", padD;*L
tmp6 = MorphologicalPerimeter@tmp5,

CornerNeighbors Ø FalseD;
images = 8tmp2, tmp4, tmp5,

ColorCombine@8tmp2, tmp6, tmp6<D<;
result =

H8plength, area, Hplength^2 ê areaL ê If@norm, 4 Pi, 1D< êê

If@rimages, Append@Ò, imagesD, ÒD &L;
If@verbose,
Column@8GraphicsRow@images, ImageSize Ø 400D, result<D,
resultD

D

Here is an example.

PerimetricComplexity@jun, Verbose Ø TrueD êê N

81016.14, 5977., 13.7472<
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ü PerimeterLength

PerimeterLength::usage =
"PerimeterPathLength@image_,verbose_:FalseD Given

a binary image that represents a set of
perimeters, defined by connected white pixels,
compute the total length of the perimeters.
The function first locates all foreground
pixels. It then extracts the 3 x 3 neighborhood
of each, and using PixelPathLength, it computes
half the distance to each of the pixels' two
nearest foreground neighbors. The perimeter
is the sum of all these distances. If verbose
is true, it shows a tally of the neighborhoods
and their corresponding path lengths.";

PerimeterLength@image_, method_: PixelBorderLength,
verbose_: FalseD :=

Module@8perim, positions, neighborhoods, tally, result<,
perim = Perimeter@imageD;
positions = Position@ImageData@perimD, 1D;
neighborhoods =
ImageTake@Switch@method, PixelPathLength, perim,

PixelBorderLength, imageD,
Sequence üü Transpose@8Ò - 1, Ò + 1<DD & êü positions;

tally = Transpose@Tally@neighborhoodsDD;
result = Total@tally@@2DD Hmethod êü tally@@1DDLD;
If@verbose,
Column@8

Column@8
Row @8"pixels = ", Length@positionsD<D;
TableForm@Transpose@8tally@@1DD, tally@@2DD,

method êü tally@@1DD<DD
<D,

result
<D,

resultD
D

Here is an example.

test = ImagePad@Image@880, 1<, 81, 1<<, "Bit"D, 1D
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PerimeterLength@test, PixelBorderLength, FalseD

8

PerimeterLength@test, PixelBorderLength, TrueD

1 3

1 3

1 2

8

ü PixelPathLength

PixelPathLength::usage =
"PixelPathLength@image_D Given a 3µ3 binary image,

finds the coordinates of white pixels not at
the center, and returns their mean distance
from the center.";

PixelPathLength@image_D := Module@8tmp1, tmp2, tmp3<,
tmp1 = DeleteCases@Position@ImageData@imageD, 1D, 82, 2<D;
tmp2 = HÒ - 82, 2<L & êü tmp1;
tmp3 = Sort@Norm êü tmp2D;
Mean@Take@tmp3, 2DD

D

Here is an example.

tst = Image @880, 0, 0<, 80, 1, 1<, 81, 0, 0<<, "Bit"D
PixelPathLength@tstD

1

2
J1 + 2 N
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ü PixelBorderLength

PixelBorderLength::usage =
"PixelBorderLength@image_D Given a 3µ3 binary

image, counts the number of black neighbor
H4-connectedL pixels. This is a measure of
the length of the exposed border of the
foreground HwhiteL pixel.";

PixelBorderLength@image_D :=
Total@1 - Flatten@ImageData@imageDD@@82, 4, 6, 8<DDD

Here is an example.

Framed@tst = Image @880, 0, 0<, 80, 1, 1<, 81, 1, 1<<, "Bit"DD
PixelBorderLength@tstD

2

ü SechKernel2D

SechKernel2D::usage =
"SechKernel2D@samples_,degrees_,scale_D Computes

a convolution kernel defined by a hyperbolic
secant HsechL function of distance from the
origin. samples is a list 8height, width< of
dimensions of the kernel in pixels, and degrees
is a list of the corresponding dimensions in
degrees of visual angle. scale defines the
width of the kernel in degrees. The origin is
defined as Floor@samplesê2D. The kernel is
normalized.";

SechKernel2D@samples_, degrees_, scale_D :=
HÒ ê Total@Ò, 2DL &ü
Sech@
Pi Array@N@Norm@8ÒÒ< degrees ê samplesDD &, samples,

-Floor@samples ê 2DD ê scaleD
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Here is an example.

ImageAdjust@Image@SechKernel2D@832, 32<, 81, 1<, .4DDD

ü Perimeter

Perimeter@image_D := Module@8padded, positions<,
padded = ImagePad@image, 1D;
positions = Select@Position@ImageData@paddedD, 1D,

PixelBorderLength@ImageTake@padded,
Sequence üü Transpose@8Ò - 1, Ò + 1<DDD > 0 &D;

ImagePad@
Image@ReplacePart@ImageData@paddedD 0,

Ò Ø 1 & êü positionsD, "Bit"D, -1DD

· Initializations

SetOptions@Graphics, ImageSize Ø 128D;

SetOptions@ListLinePlot, Axes Ø False,
BaseStyle Ø 810, FontFamily Ø "Helvetica",

AbsolutePointSize@4D<, Frame Ø True, ImageSize Ø 300D;

SetOptions@LogLogPlot, AspectRatio Ø Automatic,
Axes Ø False, BaseStyle Ø 810, FontFamily Ø "Helvetica"<,
Frame Ø True, ImageSize Ø 300D;

SetOptions@ListLogLinearPlot, AspectRatio Ø Automatic,
Axes Ø False, BaseStyle Ø 810, FontFamily Ø "Helvetica"<,
Frame Ø True, ImageSize Ø 300D;

SetOptions@ListLogLinearPlot, AspectRatio Ø 1,
Axes Ø False, BaseStyle Ø 810, FontFamily Ø "Helvetica"<,
Frame Ø True, ImageSize Ø 300D;

Perimetric Complexity of Binary Digital Images 31

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.



The next closed cell contains the definition of psf, a 64×64 array of numbers.

ü psf

ü characters

jun = ;

yi = ;

chararray =

:: , , , , ,

, , , , >,

: , , , , ,

, , , , >,

: , , , , ,

, , , , >,

32 Andrew B. Watson

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.



, , , , >,

: , , , , ,

, , , , >,

: , , , , ,

, , , , >,

: , , , , ,

, , , , >,

: , , , , ,

, , , , >>;
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cat = ;

horse = ;

family = ;

· Computing Complexity without Using Mathematicaʼs 
Morphological Operators

Some  readers  may  wish  to  write  programs  in  other  languages  to  compute  complexity.
For  that  reason  we  provide  an  explanation  here  of  how  to  compute  complexity  without
using  3×3  morphological  operators.  This  amounts  to  finding  alternate  methods  for
computing  the  perimeter.  These  are  incorporated  in  the  function  PerimeterLength,
defined  above,  and  derived  below.  These  functions  can  be  exercised  from  within
PerimetricComplexity  by  selecting  the  option  MorphologicalOperaÖ
tors Ø False. This is useful mainly for testing.

Consider the following binary image.

jun

The foreground area is easily obtained, since it is just the sum of all the white pixels.

Total@ImageData@junD, 2D

1467
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ü Using “PerimeterLength”

As noted above, there are two definitions of the perimeter of a binary digital image. The
first consists of the sum of the exposed pixel faces. To count the exposed faces we use the
function  PixelBorderLength.  This  takes  a  binary  image  of  dimensions  83, 3<  and
counts the number of black 4-connected neighbors of the center pixel. 
Here is an example.

Framed@test = Image @880, 0, 0<, 80, 1, 1<, 81, 1, 1<<, "Bit"DD

PixelBorderLength@testD

2

In this example, the center pixel has only two black neighboring pixels.

The total  perimeter  can be obtained by applying this  function to  the 83, 3<  neighborhood
of every white pixel in the image. Pixels in the interior return a value of 0, so only perime-
ter pixels contribute.
To implement this idea, we first identify the positions of all the white pixels.

positions = Position@ImageData@junD, 1D;

Next we extract all the 83, 3< neighborhoods.

neighborhoods =
ImageTake@jun, Sequence üü Transpose@8Ò - 1, Ò + 1<DD & êü
positions;

We can look at the first five.

Framed êü neighborhoods@@Range@5DDD

: , , , , >

We can also compute the pixel border length of the first five.

PixelBorderLength êü neighborhoods@@Range@5DDD

82, 1, 2, 2, 0<

In a large complex image, the same neighborhood might occur many times, so we perform
a tally.
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In a large complex image, the same neighborhood might occur many times, so we perform
a tally.

tally = Tally@neighborhoodsD;

We can take a look at the tally along with the pixel border length for each type of neighbor-
hood. Note that 850 cases consist of all white, drawn from the interior of the foreground,
with 0 border length. Here we just look at the first 10 elements of the tally.

8Framed@Ò@@1DDD, Ò@@2DD, PixelBorderLength@Ò@@1DDD< & êü
tally êê Take@Ò, 10D & êê TableForm

10 2

123 1

8 2

12 2

29 0

850 0

24 0

15 1

4 2

1 2
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The total perimeter length is the sum of all of the border lengths for all the collected neigh-
borhoods.  We use the tallied neighborhoods,  so that  the pixel  border length of each type
of neighborhood is computed only once.

Total@HÒ@@2DD PixelBorderLength@Ò@@1DDD & êü tallyLD

606

This is the complexity.

606^2 ê 1467 ê H4 PiL êê N

19.9207

ü Using “PolygonalLength”

The second definition of the length of the perimeter is the sum of sides of the polygon de-
fined by the perimeter pixels considered as points in a lattice.
To extract the perimeter, we use a new function Perimeter, defined above. This dupli-
cates a built-in Mathematica function. We verify that they yield the same results.

perimeter = Perimeter@junD

perimeter2 = MorphologicalPerimeter@jun,
CornerNeighbors Ø FalseD
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ColorCombine@8jun, perimeter, perimeter2<D

We identify the positions of all of the pixels in the perimeter.

Length@positions = Position@ImageData@perimeterD, 1DD

498

We extract all of the 3×3 neighborhoods of pixels in the perimeter.

neighborhoods =
ImageTake@perimeter,

Sequence üü Transpose@8Ò - 1, Ò + 1<DD & êü positions;

Then we use a new function PixelPathLength, which looks at a 3×3 binary neighbor-
hood, identifies the two closest white pixels not at the center, and finds the distances from
their  centers  to  that  of  the  central  pixel.  That  is  the  path  length  corresponding  to  that
neighborhood.

We apply this to all the perimeter pixels and add up the results.

Total@PixelPathLength êü neighborhoodsD êê N

547.084

We  can  verify  this  is  the  same  perimeter  length  obtained  from  PerimetricComÖ
plexity using Mathematica’s morphological operators.

PerimetricComplexity@jun, Filter Ø None,
Method Ø "PolygonalLength"D êê N

8547.084, 1467., 16.2356<
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