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Modeling acuity for optotypes varying in complexity
Andrew B. Watson
Albert J. Ahumada

NASA Ames Research Center, Moffett Field, CA. USA (1] DX

NASA Ames Research Center, Moffett Field, CA, USA @ XI

Watson and Ahumada (2008) described a template model of visual acuity based on an ideal-observer limited by optical
filtering, neural filtering, and noise. They computed predictions for selected optotypes and optical aberrations. Here we
compare this model’s predictions to acuity data for six human observers, each viewing seven different optotype sets,
consisting of one set of Sloan letters and six sets of Chinese characters, differing in complexity (Zhang, Zhang, Xue, Liu, &
Yu, 2007). Since optical aberrations for the six observers were unknown, we constructed 200 model observers using
aberrations collected from 200 normal human eyes (Thibos, Hong, Bradley, & Cheng, 2002). For each condition (observer,
optotype set, model observer) we estimated the model noise required to match the data. Expressed as efficiency,
performance for Chinese characters was 1.4 to 2.7 times lower than for Sloan letters. Efficiency was weakly and inversely
related to perimetric complexity of optotype set. We also compared confusion matrices for human and model observers.
Correlations for off-diagonal elements ranged from 0.5 to 0.8 for different sets, and the average correlation for the template
model was superior to a geometrical moment model with a comparable number of parameters (Liu, Klein, Xue, Zhang, & Yu,
2009). The template model performed well overall. Estimated psychometric function slopes matched the data, and noise
estimates agreed roughly with those obtained independently from contrast sensitivity to Gabor targets. For optotypes of low
complexity, the model accurately predicted relative performance. This suggests the model may be used to compare acuities

measured with different sets of simple optotypes.
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Visual acuity is generally regarded as a test of the
spatial resolution of the eye, involving optical, neural,
and cognitive components. Until recently, however, the
precise manner in which these components combined to
yield a particular acuity was not known. Advances in
measurement of the aberrations of the eye (Charman,
2005) have made it possible to calculate the retinal
image produced by an arbitrary acuity target (Artal,
1990). Starting from this image, several authors have
proposed models of the complete acuity task (Beck-
mann & Legge, 1996; Dalimier & Dainty, 2008;
Dalimier, Pailos, Rivera, & Navarro, 2009; Nestares,
Navarro, & Antona, 2003; Watson & Ahumada, 2008).
All of these models include optical filtering of the
optotype targets, some form of neural processing,
noise, and a final template matching operation to
identify the target. Beckmann and Legge (1996) used a
monochromatic point-spread function formula of
Navarro, Artal, and Williams (1993) followed by
sampling by the cones and an ideal observer limited
by Poisson receptor noise. Nestares et al. (2003)
included retinal sampling, cortical filtering and sam-
pling, and a process of Bayesian estimation of the
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pattern templates. They predicted effects of defocus for
a single observer, with moderate success. Watson and
Ahumada (2008) proposed a simpler model in which
sampling effects are neglected, neural processing is
simulated by a single filter, and the templates are
assumed to be the “neural images” produced by optical
and neural filtering of the optotypes. They simulated
results from Cheng, Bradley, and Thibos (2004) for
four observers viewing acuity targets through a set of
67 distinct aberration conditions (combinations of
defocus, astigmatism, and spherical aberration), and
found good agreement with measured acuity data.
Using a similar model, Dalimier and Dainty (2008)
successfully predicted effects of higher-order aberra-
tions as a function of light level. And in a more recent
report, Dalimier et al. (2009) employed a model like
that of Nestares et al. (2003) to predict effects of
defocus on visual acuity in 11 eyes from which
monochromatic wavefront aberrations had been mea-
sured. They found excellent agreement between average
data and average predictions.

In this report we investigate the ability of the model
of Watson and Ahumada (2008) to account for
variations in acuity that result from changes of
optotype. There are many different sets of acuity
optotypes in wide use (Bailey & Lovie, 1980; Ferris &
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Bailey, 1996; Moutray, Williams, & Jackson, 2008;
Williams, Moutray, & Jackson, 2008). These include
Sloan letters, the Landoldt C, the Snellen E, numbers in
various fonts, pictograms, and letters in non-Roman
alphabets. It would be useful to understand, from a
theoretical point of view, any variations in acuity that
result from the optotype selection (Dobson, Maguire,
Orel-Bixler, Quinn, Ying; Vision in Preschoolers (VIP)
Study Group, 2003; Grimm, Rassow, Wesemann, Saur,
& Hilz, 1994; Pointer, 2008). There are, at present, no
principled methods of translating between acuities
measured with different optotypes. Empirical calibra-
tion is possible (Jackson & Bailey, 2009) but suffers
from the need for a suitably large population of
appropriately selected and corrected observers. More
generally, one would like measurements of acuity that
are independent of optotype. Beyond these practical
goals, we were interested in whether the model was
capable of predicting variations in acuity with opto-
type. This is a useful test of the generality of the model.

Acuity data

The data that we simulate here consist of letter
identifications of English and Chinese characters by six
observers, fluent in both languages. They were collected
in the course of another study (Zhang, Zhang, Xue,
Liu, & Yu, 2007). In that study the Chinese characters
were further divided into six sets, based on the
computed complexity of the individual characters.
Because the data address a broad range of character
complexity, and because the data were all collected
from the same set of observers, they provide a unique
opportunity for the test of acuity models.

Aberration data

Zhang et al. (2007) did not measure the wavefront
aberrations of the six observers, so we cannot directly
simulate the optical part of their performance. Instead
we have made use of wavefront aberration measure-
ments collected from a large population of normal
human observers (Thibos, Hong, Bradley, & Cheng,
2002). In this way, a population of behaviors can be
simulated for each observer, and statistics computed
from that population.

Acuity model

Our acuity model has been described in detail
elsewhere (Watson & Ahumada, 2008); here we provide
a brief review, illustrated in Figure 1. In the acuity task
that we model, an optotype is selected from a fixed set,
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Figure 1. Outline of the template matching model for letter acuity
(Watson & Ahumada, 2008). Figure courtesy of that paper.

rendered at a selected size, and presented to an
observer. The stimulus image is transformed into a
retinal image by the optics of the eye, which we
characterize by an optical transfer function (OTF). The
retinal image is transformed into a neural image by a
neural filter, which we characterize by a linear neural
transfer function (NTF). The variabilities inherent in
both optical and neural systems are represented by
white Gaussian noise, with standard deviation o, added
to the neural image. The noise power spectral density N
is a key parameter of the model and is defined as

N =q*4 (1)

where A is the area in square degrees of a single pixel in
the model. We usually express N in the logarithmic unit
of dBB, as explained in the Appendix.

The observer compares the noisy sample neural
image to a set of templates. These templates are the
complete set of neural images of the optotypes at the
selected size. The observer selects the template that is
closest, in the geometric or squared error sense, to the
sample neural image. This model is an instance of an
ideal observer of signals known exactly.

Watson and Ahumada (2008) considered variants of
this model that included spatial uncertainty and
suboptimal template matching algorithms, but found
those manipulations to have little effect. Here we
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Figure 2. Optotypes used in the experiments of Zhang et al. (2007). Each row is one set, and the set index shown at left. Chinese
character optotypes increase in complexity with set index number. Optotypes are also indexed within a set, as shown above.

consider only the ideal model with optimal templates
and without uncertainty.

Letter recognition data

The data analyzed in this report have been described
in a previous publication (Zhang et al., 2007). The data
describe letter identifications for the optotypes shown
in Figure 2. These consisted of seven optotype sets,
each with 10 elements. We assign each set an index
number for reference. The first set consisted of the 10
Sloan letters; the remaining sets consisted of Chinese
characters. Using an adaptation of the objective stroke
frequency complexity measure (Majaj et al., 2002), the
authors selected six sets of Chinese characters. Within
each set complexity was nearly constant, while com-
plexity increased with set index.

The raw data were provided to us by the first author
of Zhang et al. (2007). Each data record consists of a
decision associated with an observer, an optotype
index, an optotype set index, an optotype height, a
session index, and a repetition index within the session.
Each decision consists of an optotype index (selection
of one optotype within the set).

A possibly different set of six sizes was used with
each observer and optotype set, but these sizes were
drawn from a total set of 32 sizes, consisting of letter

heights ranging from 2.7 to 7.92 arcmin. Throughout
this report we will use the word size as synonymous
with letter height.

There were six observers, seven optotype sets, 10
optotypes within each set, six heights per observer and
optotype set, and five replications in each session. In
this paper we identify the observers by the colors used
to depict their data: Red, Green, Blue, Gray, Orange,
and Purple. Three of the observers (Blue, Gray,
Orange) completed 10 sessions, two (Red, Green)
completed five sessions, and one (Purple) completed
seven sessions. In total there were 98,700 decisions.

In the experiment, optotypes were dark characters
on a white background of luminance 89 cd/m?. Pupil
diameter was not specified or controlled. Based on the
mean age of the observers (22.8 years) and the
relationship between luminance, age, display size, and
pupil diameter (Stanley & Davies, 1995; Watson &
Yellott, 2012; Winn et al.,, 1994), we assumed a
diameter of 6 mm. Further details on our selection of
pupil size are provided in the Appendix.

Wavefront aberration data

As noted above, optical aberrations for the six
observers were unknown, so we replaced them with
aberration sets from 200 normal human eyes of 100
observers collected by the Indiana Aberration Study
(IAS) (Thibos et al., 2002). IAS aberration data for a 6-
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mm pupil were provided to us by Larry Thibos and
consisted of Zernike coefficients for the first 36 modes.

Calculation of retinal images

Optotype images were rendered at the center of a
256 x 256 image. Details of character rendering are
provided in the Appendix. The image was filtered by
an optical transfer function (OTF) for a given eye. The
OTF was computed using standard methods (Watson
& Ahumada, 2008) from the wavefront aberrations for
a given eye, defined in terms of Zernike coefficients. In
these calculations, we used the following parameters:
image size (pixels) =256, image size (degrees) =0.6784,
pupil size = 6 mm, center wavelength = 555 nm.
Although the wavefront data we used were recorded
with monochromatic light, we computed from them a
polychromatic OTF for white light, using the methods
described in the Appendix.

The retinal image was then filtered by a NTF. This
NTF was defined by an EmG (exponential minus
Gaussian) function (Watson & Ahumada, 2005),
multiplied by an oblique effect filter (OEF) with
standard parameters (Watson & Ahumada, 2005).
Details on calculation of the NTF are provided in the
Appendix.

The OTF and NTF were then multiplied together to
create a neuro-optical filter (NOTF). Individual opto-
type images from a given set at a given size were
rendered at the center of a 256 x 256 image and filtered
by the NOTF. These constitute the neural images for
that set at that size.

Since performance of the acuity model depends only
on the noise and the matrix C of cross-correlations
among the neural images (Equation 2), we accelerated
computation of the model by precomputing the matrix
C for each optotype set and size. Each matrix was 10 x
10, and there were seven optotype sets, 32 sizes for each
set, and 200 eyes, so the result was a data structure with
dimensions 200 x 7 x 32 x 10 x 10.

Simulation of one trial

The behavior of the acuity model can be simulated as
follows. Let the optoptypes be indexed 1, ..., K, and let
s, be the neural image for the optotype indexed by k.
Let C be the K x K matrix of cross-correlations among
the K neural images,

jk=1,...,K (2)

where © indicates the sum of the pixel-by-pixel product
of the two images (the dot product of the two images
regarded as vectors). Let e be the vector consisting of
the diagonal of this matrix, corresponding to the

Cj}k = © Sk
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energies of the neural images. Let ¢ be the standard
deviation of the Gaussian noise added to each pixel of
the neural image. Let k& be the index of the letter
presented. Then we consider the vector g

gi=Cir+m(o,C)— %ej (3)
where m is a random vector of length K, constructed as
described in Watson and Ahumada (2008). The
observer locates the largest entry of g, and returns its
index j as the index of the optotype identified. This
algorithm corresponds to the behavior of an ideal
observer of a signal known exactly.

Simulation of acuity

To estimate acuity from this model, we select a value
of ¢ and conduct T trials for each optotype. The
optotype size in a given presentation is controlled by an
adaptive Quest procedure (Watson & Pelli, 1983). This
procedure analyzes past trials and sets the current size
to the current estimate of acuity. The procedure is
customized so that K trials, one per optotype, are
presented at a given size before a new size is selected.
The Quest method provides a highly efficient way of
estimating acuity from the model. To illustrate the
simulation, we provide a demonstration in the Appen-
dix in which the reader can select a set of optotypes and
a noise level.

Simulation of confusion matrices

To simulate the complete confusion matrix, we select
a value of o, and for each letter size used for that
observer, we conduct 7 trials for each optotype. The
result consists of a list of confusion matrices, indexed
by letter size, for each observer.

Letter recognition data

A summary of the letter recognition data of Zhang et
al. (2007) in terms of percent correct versus size is
shown in Figure 3. Note that one observer (Blue) is
considerably more acute than the others. Note also that
the curves move to the right as set number increases,
showing that the more complex characters require a
larger size for equivalent performance. The data are
plotted against a log size axis since we observed that the
curves were more equal in slope when plotted this way.
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Figure 3. Proportion correct versus optotype size for six observers and seven optotype sets. The colors indicate individual observers.
Optotype sets are shown in each panel. Data from Zhang et al. (2007). The dashed line is chance performance.

We fit the data for each observer and optotype set
(each curve in Figure 3) with a cumulative normal
distribution function (we also tried a Weibull function,
which fit about as well). In the fitting, size was
expressed as log arcmin. Following Zhang et al., we
define acuity as the letter size yielding a proportion of
0.669 correct. The fit allows us to estimate this acuity
and also a slope of the psychometric function. In
Figure 4 we show example fits for two cases.

Thresholds for each observer and optotype set are
plotted in Figure 5. The mean and standard deviation
are shown in the companion figure. Mean size
threshold increases substantially from set 1 (Sloan)
to sets 2—7 (Chinese), with a mean increases of 62%.
Within the Chinese character set (2-7) there is an
increase with set number, and thus with stroke
frequency, but little change among the three most
complex sets. Observer Blue thresholds are well below

a b
1.0 ; ; 1.0 ; ‘
CNormalPF CNormalPF
0.8 mean = 0.552 0.8 mean=0.763
sd = 0.0976 sd =0.123
> 067guess=0.1 > 067guess=0.1
Z | error=28.65 Z | error=23.16
8 8
S o4f & 04}
obs: Gray, set 1 obs: Purple, set 7
0.2 acuity = 0.585 log arcmin - 0.2} cuity = 0.804 log arcmin -
acuity = 3.85 arcmin 1 acuity ='6.37 arcmin
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Figure 4. Example of cumulative normal fit to data for two observers and two optotype sets. The dashed gray line indicates threshold.
Parameters of the fit are printed on the left in each panel, and on the right are the estimated acuity, observer, and set index.
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Figure 5. Threshold letter size for six observers and seven optotype sets. Colors are for individual observers. The mean and standard
deviation are shown in the panel on the right. One letter from each set is shown.

the mean and also show less of an effect of set
number.

When fitting the data we also estimated the width of
the psychometric function (the standard deviation of
the cumulative normal distribution, as a function of log
arcmin). This parameter had a mean value of 0.113. It
did not vary much as a function of observer or
optotype set, as shown in Figure 6. The most sensitive
observer (Blue) and the least sensitive observer (Purple)
have values slightly greater than the mean.

The invariance with respect to optotype of psycho-
metric function slope, on a log size abscissa, is a useful
fact that is exploited in the design of acuity tests. When
tests space optotype size uniformly in logMAR units,
they are also spacing them uniformly in just-noticeable-
differences.

Simulation of acuity with fixed noise

To assess the performance of the model, we first
fixed the noise parameter o at 0.24 (N =-3.931 dBB)

and used a Quest adaptive procedure based on 1,024
trails/letter to locate the threshold size for each
optotype set (see the Appendix for details). From
earlier simulations, we determined that this noise value
would approximate the human data for Sloan letters.
We have repeated this simulation for each of the 200
eyes of the IAS. We also provide a demonstration in the
Appendix to illustrate the process of estimating acuity
for a given set of optotypes.

All 200 outcomes are pictured in Figure 7a, along
with the mean in red. Four of the curves fall outside of
the figure, illustrating cases for which the threshold size
was greater than the largest available size in the Zhang
et al. (2007) experiment. The figure shows the range of
threshold sizes that might be predicted from the model
for a population of normal eyes.

In Figure 7b the mean and standard deviation have
been reproduced (red), along with the human data
(black). For these simulations, a noise level (N =—3.931
dBB) was chosen to approximate the data for optotype
set 1 (Sloan letters). The figure shows that, with one
fixed noise value set to agree for set 1, set 2 is also
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Figure 6. Mean and standard deviation of psychometric function width for each observer and optotype set. The mean is shown by the

dashed gray line.
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Figure 7. (a) Model size threshold versus optotype set for 200 eyes. The mean is shown in red. The noise level was N=-3.931 dBB. (b)
Mean model size thresholds (red) compared to data (black). In both cases, error bars show plus and minus one standard deviation.

accounted for, but the data move above the predictions
for the more complex sets. In other words, the model
accounts for some, but not all of the rise in threshold
size with set number (or stroke frequency). Indeed the
model actually predicts a decline in threshold from set 2
to set 3, in spite of an increase in stroke frequency. The
separation between the two curves is a measure of the
portion of the rise in threshold size, with set number,
that is not accounted for by the model.

Although in Figure 7b we used a noise value that
yielded model performance approximately matched to
data for the Sloan letters (set 1), we could have used a
noise suitable to match set 3, in which case the more
complex sets 3—7 would have been well fit, while the
predictions for the simpler sets 1 and 2 would have been
too high. The point is that with a single noise value, one
cannot fit both simple and complex sets. We could fit
all points with two noise parameters, for the two sets,
but that would not allow a predictive model because we
would not know with a new set which parameter to use.

Considering just the predictions in Figure 7b, can we
explain the pattern of results? At least three things are
changing across the various sets: stroke width varies (it
is thinner for the Chinese characters), the number of
strokes per unit area, and thus the mean spatial
frequency increases, across sets 2—7, and the amount
of information in the target increases. The first two
factors will reduce performance, while the last will
increase performance, but in each case it is difficult to
say by how much. The ideal observer shows us
quantitatively how all the factors combine to yield
performance.

We also compared measured and simulated psycho-
metric function width (the inverse of slope). This
comparison is shown in Figure 8. As in Figure 6,
psychometric function width is quantified by the
standard deviation of the cumulative Gaussian as a
function of log size. For the model (red) and data

(black) we show the mean and a ribbon that encloses
plus and minus one standard deviation. For the data,
the standard deviations are computed over the six
observers. For the model, they are computed over the
200 IAS eyes. The width values for the model appear
slightly higher (shallower slopes), but the overall
agreement between model and data is reassuring.
Uncertainty tends to steepen psychometric functions
relative to the ideal observer (Pelli, 1985), and this may
explain the small difference in slope.

Estimating noise from proportion correct

An alternative approach to understanding the role of
optotype set on threshold size is to estimate the best
fitting model noise parameter N for each set by fitting
the model to the proportion correct data. To do this,
for each set, observer, and eye, we selected a range of N
values. For each, we simulated 1,000 trials for each
letter at each of the sizes used by Zhang et al. (2007) for
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Figure 8. Comparison of psychometric function widths for the data
(black) and the model (red). Mean plus and minus one standard
deviation are shown for each.
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that set. The error between model and data, defined as
the log of the likelihood ratio, expressed as

error = Z[pdata log(Pmodel)

size

+(1 _pdata)log(l _pmodel)] (4)

was computed for each noise value (a small constant
was substituted for zero values of p,,,4; to prevent
overflow). An interpolating function was then used to
estimate the N value yielding the minimum error. The
accuracy of this method was confirmed by generating
simulated data from the model with a known N, and
then estimating the value of N. This yielded a total of 6
x 200 = 1,200 noise estimates for each set. The average
of these 1,200 values is shown in Figure 9.

The noise levels divide roughly into two groups: for
sets 1 and 2, they are around —3 to —5 dBB, while for
sets 3—7 they are about 3 dBB greater. Consistent with
Figure 7b, these results show that it is possible to
account for sets 1 and 2 with approximately the same
noise value, but that the other sets require a signifi-
cantly larger value. As expected, these estimated noise
values correspond closely to the discrepancy between
the two curves in Figure 7b.

Estimating noise from confusion matrices

To this point we have examined the data and
predictions in terms of proportion correct. This is the
only measure that matters in estimation of threshold
size or acuity. But the data of Zhang et al. (2007) also
allow us to examine the pattern of errors, in terms of
the confusion matrix. This a matrix showing, for each
letter presented (row), the number of times a particular
letter was reported (column).

N (dBB)

C A M &£ #m B F
1 2 5 6 7
Optotype Set

Figure 9. Estimated noise values for optotype sets. Each point is
the mean over estimates for six observers and 200 eyes. Error
bars show plus and minus one standard deviation. Standard
errors are smaller than the point size.
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The complete data for each condition (observer,
optotype set, size) is one confusion matrix. The
proportion correct is a single number derived from
the matrix (the ratio of entries on the main diagonal to
the total entries in the matrix). The data for a single
observer and optotype set is a collection of confusion
matrices, one for each size used with that observer. An
example of such a collection is shown in Figure 10.

Rather than fitting to the proportion correct, as we
have done above, we can fit to the complete confusion
matrix. For each set, observer, and IAS eye, we selected
a range of noise values. For each, we simulated 1,000
trials for each letter at each of the sizes used by Zhang
et al. (2007) for that set. We then computed the error
between model and data over the complete set of sizes,
again using Equation 4. The validity of this statistic was
again tested by creating and fitting sets of simulated
data.

An interpolating function was then used to estimate
the noise value yielding the minimum error. This
yielded a total of 6 x 200 = 1,200 noise estimates for
each set. The average of these 1,200 values is shown in
Figure 11. In the same figure for comparison we
reproduce in red the estimates of N obtained from the
proportion correct, shown in Figure 9.

The noise levels again divide roughly into two
groups: for sets 1 and 2, they are around —3 to —5
dBB, while for sets 3-7 they are a about 3 dBB greater.
Consistent with Figure 7b, these results show that it is
possible to account for sets 1 and 2 with approximately
the same noise value, but that the other sets require a
significantly larger value. Not surprisingly, these
estimated noise values correspond closely to the
discrepancy between the two curves in Figure 7b.

ER

Proportion correct
o
@D

&
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¥

0% 45 5 55 6 65 7. 75 8

Size (min)
Figure 10. Example of confusion matrices for observer Gray for
optotype set 5 at six sizes. The matrices are positioned at the
corresponding proportion correct, which is given by the proportion
of trials lying on the main diagonal in each matrix. One matrix is
expanded for clarity.
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Figure 11. Model noise for each optotype set estimated from
confusion matrices. The faint red points are the estimates from
percent correct, reproduced from Figure 9.

The estimates obtained from the full confusion
matrix (black) are systematically but only slightly
higher than those obtained from just the proportion
correct (red). This may be due to a small but consistent
positive bias that we find in simulations of our method
of estimation from confusion matrices. But in general
the two estimation methods yield results that are in
close agreement.

Efficiency and complexity

Efficiency is the performance of an actual observer
relative to an ideal observer. It is computed as the ratio
of squared signal/noise ratios of the two observers
(Pelli, Burns, Farell, & Moore-Page, 2006; Tanner &
Swets, 1954). Thus the noise estimates in Figure 11 can
be converted to estimates of efficiency relative to the
Sloan letters by computing N;/N,, where N, is the
estimated noise for set k. The inverse of efficiency is
plotted as black points in Figure 12. The normalized
values range from 1 (for the Sloan letters, by definition)
to between 1.4 and 2.7 for the Chinese characters.

Pelli et al. (2006) have examined efficiency for
identification of letters from various alphabets embed-
ded in noise. They found efficiency for one set of
Chinese characters that was about 2.1 times lower than
that for Sloan letters, consistent with the differences
shown here.! It should be noted, however, that the
letters here, at size threshold, are some 13 (Chinese) to
32 (Sloan) times smaller than those used by Pelli et al.

Pelli et al. (2006) also found that efficiency was
nearly inversely proportional to the average perimetric
complexity of the letter set. Perimetric complexity is
defined for binary images as the length of inner and
outer perimeters of the foreground, squared and
divided by the areca of the foreground. For binary
digital images, composed of discrete pixels, a strict
definition of the perimeter would consist of a city-block

Watson & Ahumada 9

3.5~

1/Efficiency
or
Perimetric Complexity

05}

o.0b
1

Optotype set

Figure 12. Inverse of efficiency (normalized to Sloan letters) as a
function of optotype set (black). Raw perimetric complexity is
shown by the gray line; the red line shows visual perimetric
complexity at 1/6 the acuity distance.

path along the exposed edge of each pixel in the
perimeter (Watson, 2012). Complexity calculated in
this way is shown by the gray line in Figure 12. This
measure of complexity does not precisely mirror the
changes in efficiency, but does show a rough agree-
ment.

Perimetric complexity is defined for binary images
and is a sensible measure when letters are large relative
to the visual point-spread. However at the acuity limit,
characters are severely blurred by the eye’s optics and
possible neural filtering, which makes the measure
problematic. This is because the blurred letters are far
from binary and may have lost much detail. We have
developed a metric of visual perimetric complexity that
attempts to deal with these challenges, by first filtering
the letter in an appropriate way and then binarizing the
result (Watson, 2012).

It is instructive that when this metric is applied to the
optotypes used here, at the acuity size, all optotypes
have a visual perimetric complexity of approximately 1.
This is the minimum theoretical value, and is the result
obtained from a circular blob. The severely blurred
optotypes retain sufficient gray-scale information to be
identified, but their perimeters (as we have defined it)
are uninformative. We conclude that perimetric com-
plexity is not a sensible measure for targets near the
acuity limit.

To illustrate this problem, in Figure 13 we show the
calculation of visual perimetric complexity for one
optotype from set 7 when viewed at twice the acuity
size.

However, for illustrative purposes, we have comput-
ed visual perimetric complexity at a size 6 times larger
than the threshold, and the results are shown by the red
curve in Figure 12. The point is only to show that
blurring has a selective effect on the more complex
optotypes.

With no filtering (Figure 12, gray line), the
complexity increases with set number. This is expected.
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Figure 13. Calculation of visual perimetric complexity for one
optotype at twice its acuity size. The images show: original
optotype; after visual filtering; after binarization; location of the
perimeter, relative to the original optotype. The visual perimetric
complexity is 1.35.

As noted earlier, the optotype sets were designed by
Zhang et al. (2007) to increase in stroke frequency with
set number, and those authors report that stroke
frequency and perimetric complexity were highly
correlated (r = 0.956). However, this unfiltered com-
plexity does not match the measured efficiencies, which
are nearly constant for the more complicated Chinese
characters. But this flattening at higher set numbers is
somewhat mirrored by the filtered complexities (Figure
12, red line).

In summary, variations in measured efficiency are
roughly mirrored by increases in perimetric complexity,
but not when perimetric complexity is computed on
appropriately blurred optotypes. Perhaps the variations
are related to some other measure of image complexity,
but that measure has not yet been defined.

Correlation with confusion matrices

In a recent article, Liu, Klein, Xue, Zhang, and Yu
(2009) proposed a model of human letter recognition
based on a small set of measurements (derived from
geometric moments) on the letter images. To evaluate
their model, and compare it to other models, they
applied it to the empirical confusion data collected by
Zhang et al. (2007) that we have used here.

To evaluate their model, they relied primarily on
Pearson correlation between off-diagonal elements of
empirical and model confusion matrices. To enable
comparison of our model with theirs, we have
attempted to follow their correlation procedures
exactly. This has not always been possible. First, they
describe their data as consisting of “approximately
110,000 trials,” while the data we were provided consist
of only 98,700 trials. Thus our two data sets may not
correspond exactly. Second, they indicate that they
created a set of seven empirical confusion matrices by
combining results across observers, but selecting only
data from sizes that yielded a percent correct of
between 54% and 60%. They published these matrices
(converted to response proportions). However, apply-
ing these rules, we find two optotype sets (3 and 4) that
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Figure 14. Mean correlation between model and data confusion
matrices for the present model (Template) and a series of models
described by Liu et al. (2009) (Geometric Moments).

yield no data in the requisite band. For those sets that
do yield data, the matrices we find are slightly different
from those published. To allow us to proceed, with
these caveats, we have determined the selection band
that gives the best agreement (in the least squared error
sense) between the published matrices and our own.
This band is 40% to 75%. Using this band, we
constructed mean confusion matrices for each optotype
set by averaging over observers.

We then found for each optotype set the value of N
that maximized the correlation between model and data.
This corresponds to a model with seven parameters, one
for each optotype set. The average correlation for this
optimized model is plotted against number of parame-
ters in Figure 14 as the single black point. Liu et al.
(2009) considered several variants of their model,
differing in number of parameters. We plot their average
correlations against number of parameters in Figure 14.
It is evident that our model lies above the red curve, and
thus fits better than a geometric moment model with a
comparable number of parameters.

Comparison with detection data

Further evidence for the plausibility of the template
model of acuity can be sought in a comparison of the
absolute level of performance in the acuity task and in a
simple detection task. As an example, we consider
detection of a Gabor. Again assuming an ideal
observer, the proportion correct in a 2AFC task can
be shown to be

P(e) = @(\/gv) (5

where @ is the cumulative distribution function of the
standard normal density and E'is the energy of the neural
image. We can compute values of E using average
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threshold contrasts for a Gabor target from the
ModelFest project (Watson & Ahumada, 2005), com-
bined with the neural and optical transfer functions
employed above. Using the ModelFest value of P(c) =
0.84, we can estimate the corresponding value of N. We
can repeat this exercise for each of the 200 eyes in the IAS,
and produce a distribution of estimates of N. This is
shown in Figure 15 for Gabor functions of 4, 8, and 16
cycles/deg, each of constant one octave bandwidth. These
are stimuli 12, 13, and 14 from ModelFest experiment
(Watson & Ahumada, 2005). We also show as a red arrow
the mean value estimated for the Sloan letters.

Considering the breadth of the distribution, this
represents rather close agreement between the values of
N values estimated in these two very different ways and
provides further support for the acuity model proposed
here.

However, there are a number of differences in
methods and subject populations that complicate this
comparison. Two of these differences favor Iletter
identification. First, the observers employed by Zhang
et al. (2007) were younger (mean age 23 vs. 39 years).
Second, letter identifications were performed with
unlimited duration, while the Gabor targets had a brief
Gaussian time course with a standard deviation of
0.125 s. The effect of this duration difference on noise
estimates cannot be know precisely, but could be as
much as a factor of 2 (Watson, 1979).

Favoring Gabor detection, we have observed in this
paper that more complex targets yield larger estimates
of noise, and the Sloan letters are arguably more
complex than the Gabor targets. Indeed elsewhere Pelli
(2011) has argued that to the visual system, the Gabor
may be the simplest target, with an efficiency of 20%,
while large Sloan letters have a lower efficiency of 10%.
Though Sloan letters at the acuity limit may be simpler
than large letters (cf. Figure 13) they may nonetheless
be more complex than the Gabor, which would lead to
larger noise estimates for the letter targets. Since these
three caveats work in opposite directions, they may
cancel, yielding the relatively good agreement we find
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here between noise estimates for Gabor detection and
letter identification.

In Figure 15 the mean noise estimates for Gabor
detection rise as the patterns become smaller and of
higher spatial frequency. One possible explanation for
this is spatial uncertainty. As the near-threshold
patterns become smaller and of higher spatial frequen-
cy, their position becomes less certain. The optotypes
do not suffer as much from this effect, because they are
all of high contrast. A better comparison would be to a
contrast increment experiment with Gabors. A second
explanation is that the NTF we have used here is more
sensitive to high spatial frequencies than the one
actually derived from the ModelFest data (for reasons
explained elsewhere [Watson & Ahumada, 2008], it was
shifted by a factor of two to higher spatial frequencies).
To match the lower sensitivities of ModelFest observers
at high spatial frequencies, a higher value of noise must
be assumed.

Acuity and complexity for the ideal observer

One of the predictions of our ideal observer model is
that threshold letter size generally increases with
complexity, as shown by the red curve in Figure 7b.
Why might this be so? The more complex optotype sets
contain more information, and on that basis might be
expected to be more discriminable than the simpler sets,
and thus have a lower threshold. But of course that
larger amount of information is conveyed in strokes
and patterns that must be more crowded together, if
size is held constant, and thus be represented with, on
average, higher spatial frequencies. If the area must be
expanded to allow each feature to be resolved, then we
would expect the increase in size that is in fact
predicted. These two factors, information and resolu-

02l 4 c/deg 02l 8 c/deg 02l 16 c/deg
0.1} 0.1} l I 0.1} l l
0" -5 0 5 ) -5 0 5 ) -5 0 5
N (dBB) N (dBB) N (dBB)

Figure 15. Distribution of estimates of noise N for detection of one octave Gabor targets, assuming the same neural and optical transfer
functions used in simulation of letter identification. The green arrow is the median of the distribution, and the red arrow is the median value

estimated from the confusion data for Sloan letters (Figure 11).
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tion, presumably compete to produce the particular
gyrations that we see in Figure 7b.

We also note that the Chinese characters in sets 2—7
employed narrower stroke widths than in the Sloan
characters. As shown by Zhang et al. (2007) this
reduces acuity, and our model likely manifests this
same effect, providing an additional explanation for the
difference in predictions between Sloan and Chinese
characters.

Efficiency and complexity

One of the main results of our analysis is that
efficiency of optotype identification declines with
complexity for targets at the acuity limit. This
compares to a comparable result obtained previously
for letter targets much larger than the acuity limit (Pelli
et al., 2006). In their discussion of efficiency and
complexity, Pelli et al. (2006) argued that the reduction
in efficiency could be the result of independent
detection of multiple simple features. But there are
several other equally plausible explanations.

One is the idea that the templates are imperfect, and
that the amount of imperfection increases with
complexity. This would likely be the case for any
plausible model of learning and memory for spatial
templates. Imperfection of the template would result in
a decline in efficiency, since the ideal observer employs
a perfect template. Elsewhere Mcllhagga and Paakko-
nen (1999) have explored the behavior of noisy or
imperfect templates.

A second possible explanation is uncertainty. As
noted by Zhang et al. (2007) primary school students
must learn at least 2,500 Chinese characters, while there
are only 26 letters in the Roman alphabet, and only 10
letters in the Sloan subset. In the acuity task, the
observers select from among a fixed small set of
alternatives. The sessions for various sets and sizes
were randomly interleaved. To perform like the ideal,
the observers of Zhang et al. (2007) would have to
accurately learn and maintain separate subsets for each
of the six sets of Chinese character optotypes. To the
extent that they do not, performance and efficiency will
suffer. Because the more complex characters are likely
to be less frequently used, and thus less familiar, they
may suffer more.

Reduced familiarity with the Chinese characters may
also lead to less perfect templates. Although the
subjects of Zhang et al. (2007) had considerable
experience with both English and Chinese alphabets,
the much larger number of Chinese characters may
reduce the learning of each one. Pelli et al. (2006) have
shown that at least some alphabets are learned rapidly,
but their results also show that with increasing training
learning slows, but does not stop.
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Limitations of perimetric complexity

The measure of perimetric complexity has become a
popular method of quantifying the complexity of visual
targets (Pelli et al., 2006). However, as already noted, it
is defined only for binary images and becomes
particularly problematic for small, highly blurred
targets near the acuity limit (Watson, 2012). The
complexity of the original target will be irrelevant if it
is removed by visual filtering (cf. Figure 13). Perimetric
complexity, as a visual measure, also does not make
much sense in a theory that imagines the simplest
feature, with the lowest complexity, to be a Gabor
function. That function is not even defined for a binary
image, and its binary renderings would have rather
high perimetric complexity. We do not yet have a clear
understanding of how to measure visual complexity,
but until we do we suggest that perimetric complexity,
if used at all, be used only for large binary targets in
which visual filtering is a minor effect.

Simulating a population of observers

In our simulations we have made use of a large
population of empirically measured eyes in order to
accurately predict population behavior. We could have
instead computed an “average” eye and computed only
a single simulation for this “average” observer. The
problem with this approach is that there is no single
correct way to compute the average eye. As noted by
Thibos et al. (2002), one could average the OTFs, or the
PSFs, but neither, when used in a simulation, is
guaranteed to yield the mean performance of the
ensemble of eyes. Averaging the PSFs, in particular,
will give a mean PSF that is much more blurred than
the typical PSF. Likewise averaging the OTFs or the
PSFs will lead to a mean that is much more
symmetrical (and thus without phase shifts) than any
individual PSF or OTF. For these reasons we have
elected to simulate each eye separately and consider the
distribution of results. This has the added advantage of
indicating the expected variation in the population of
the simulated performance. We believe this population
simulation methodology is a profitable approach that
should be adopted more often.

Implications for selection and calibration of
optotypes

One motive for this study was the hope that the
acuity model could provide a means of designing,
selecting, and calibrating optotypes. As noted, there are
many sets in wide use and frequent attempts to create
new sets that serve a particular need. With existing sets,
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there is a need to calibrate: to determine the relation
between its results and those of some canonical set,
such as the Sloan letters. With new sets, there is a need
to calibrate as well and also to confirm that its results
are not too far from those of the canonical standard.
The model might provide other benefits as well, such as
selecting elements of the set that are sufficiently distinct
from one another, and designing tests that have low
variability.

However, we have shown that the model cannot
account for differences in performance that are
associated with large changes in complexity. This might
suggest that the model cannot serve the calibration
function. But in practice, optotype sets are invariably
simple. Indeed, that appears to be an implicit design
principle. And we note that the model did a reasonable
job of predicting relative performance of Sloan letters
and the simplest subset of Chinese character optotypes.
Thus, though further research on this point is
warranted, the model may indeed serve a valuable
function in calibration, design, and selection of simple
practical optotypes.

Templates versus features

Pelli et al. (2006) have argued that letter identifica-
tion relies on detection and identification of features,
followed by feature binding. This continues a long
tradition of feature-based models (Geyer & DeWald,
1973; Gibson, Osser, Schiff, & Smith, 1963; Yeh &
Eriksen, 1984). These theories have suffered from an
inability to identify the actual features involved. Liu et
al. (2009) have made an effort to remedy this problem
by proposing a particular set of luminance contrast
patterns as the elementary features involved in letter
identification, at least near the acuity limit.

Our model also continues a tradition, that of
template models (Blommaert, 1988; Gervais et al.,
1984; Loomis, 1990; Watson & Fitzhugh, 1989). What
we have shown here is that, based at least on the
pattern of results in the confusion matrix, a template
model performs better than the feature model of Liu et
al. (2009). While template matching may be an
implausible model for the visual identification of more
elaborate and less stereotyped patterns and objects, it
cannot yet be rejected as a model for identification of
letters.

Conclusions

Relative acuity performance on different optotype
sets (Sloan letters and six sets of Chinese characters)
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from a single set of observers cannot be predicted by an
acuity model consisting of an ideal observer limited
only by noise, optical filtering, and neural filtering.

Efficiency for the acuity model should be indepen-
dent of optotype set, but efficiencies for Chinese
character optotype sets were between 1.3 to 2.7 times
lower than for Sloan letters.

Decreased efficiency of Chinese character optotypes
is loosely associated with increases in complexity, as
measured by perimetric complexity.

Perimetric complexity is a poor measure of com-
plexity of small, blurred, gray-scale targets near the
acuity limit.

The acuity model does provide a reasonable account
for the relative performance of Sloan letters and the
simplest set of Chinese character optotypes.

The acuity model may be useful in calibrating
acuities measured with different simple optotypes.

Estimates of internal noise for the acuity task and for
detection of a Gabor target are consistent, but this
conclusion must be qualified by differences in observer
populations, target complexity, and target duration.

Psychometric functions for the acuity model and
human observers were similar in slope.

The acuity model provided a better fit to the data, as
measured by correlation of confusion matrices, than
did a feature model based on geometric moments.
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addition of a noise image n with standard deviation .
The ideal observer considers which of the template
neural images s; is closest to the signal plus noise image
S, + n; that is, it seeks the index j for which the
following is minimized

d; = |lsi — (s +n)lI”. (6)

Expanding this expression for the distance, we have

di = |Ill* = 257 © st = 25 © m + [|sic + |’ (7)

where ® indicates the sum of the pixel-by-pixel product
of the two images (the dot product of the two images
regarded as vectors). Note that the last term is just an
additive constant, that does not depend on the index ;.
Thus minimizing the distance is equivalent to maxi-
mizing the quantity

1
g/ZS/@Sk+S/@”—§||S_/|\2- (8)

We call the quantity g; the discriminant. It is convenient
to define C as the K x K matrix of cross-correlations
among the K neural images,

Cl'7k:Sf®S/c ];kZI,K (9)
Then we can rewrite the discriminant as
1
gj:Cj,k"i_Sj@n—iCjJ. (10)

Note that the noise term s; © n is a vector of length K.
When conducting Monte Carlo simulations, rather
than constructing on each trial a new random image n
with possibly millions of pixels, it is sufficient to
directly construct a vector of length K, provided that its
elements have the correct correlation. A method for
constructing such a vector from the matrix C and the
noise standard deviation ¢ is described in Watson and
Ahumada (2008). We write that vector m(a, C). Finally,
the discriminant can be written

1
g = Cix+m(0,C) —5C,. (11)
The observer locates the largest entry of g, and returns
its index j as the index of the optotype identified. This
algorithm corresponds to the behavior of an ideal
observer of a signal known exactly.

Pupil diameter

Pupil diameter has a substantial effect on the optical
performance of the eye. Larger pupils produce a
smaller diffraction-limited point-spread function, but
admit more aberrations. In order to simulate the
optical performance of the observers in the experiment
of Zhang et al. (2007) it is necessary to select an
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appropriate pupil diameter. Elsewhere we have derived
a unified formula for pupil diameter that includes
luminance, age, and adapting field size (Watson &
Yellott, 2012).

The mean age of observers in Zhang et al. (2007) was
22.8 years. Display maximum luminance (and adapting
background) was 89 cd/m?. The display was viewed
binocularly in a “dimly lit room.” Letter size was varied
by changing the viewing distance, which ranged from
4.1 to 9.6 m. Display pixels were square with a width of
0.189 mm, yielding resolutions from 378.6 to 886.5
pixels/deg. The display subtended 2,048 by 1,536 pixels,
so adapting field areas varied from 21.9 to 4 deg’.
Using these values in our unified formula gives
predicted pupil diameters of between 6.5 and 5.6 mm
(Watson & Yellott, 2012). Accordingly, we used a pupil
diameter of 6 mm in our simulations.

IAS eyes

Because the optical characteristics of the observers of
Zhang et al. (2007) were not recorded, we made use
instead of a set of aberration coefficients measured for
a population of 200 of healthy eyes in 100 observers in
the IAS (Thibos et al., 2002). A file of the coefficients
was provided to us (Thibos, personal communication).
For the 6-mm pupil diameter used in this report, the file
provided coefficients of modes 0-35 at a measurement
wavelength of 633 nm.

Polychromatic optical transfer functions

The psychophysical data we analyzed were collected
with polychromatic (white light) targets, whereas the
wavefront aberration data we used in our simulations
were recorded with monochromatic light at 633 nm.
Under simplifying assumptions, it is possible to
generate a polychromatic PSF or OTF from a set of
monochromatic aberrations (Ravikumar, Thibos, &
Bradley, 2008). The standard assumption is that only
the defocus term varies with wavelength, due to
longitudinal chromatic aberration. This assumption is
based on aberration measurements at multiple wave-
lengths that show only small changes in terms other
than defocus (Marcos, Burns, Moreno-Barriusop, &
Navarro, 1999). Following procedures described previ-
ously (Nestares et al., 2003; Ravikumar et al., 2008), we
computed monochromatic OTFs for a series of
wavelengths centered on 555 nm, at intervals of 10
nm, extending from 405 to 695 nm. In each case, the
Zernike coefficient corresponding to was computed
based on a published formula (Thibos, Ye, Zhang, &
Bradley, 1992),
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Figure A1. Change in the Zernike defocus coefficient as a function
of wavelength due to longitudinal chromatic aberration.

q
Dsgo(m) = p p— (12)
where D is defocus in diopters, m is the wavelength in
micrometers, and p, ¢, and ¢ are parameters (p =
1.68524, g = 0.63346, ¢ = 0.21410). This describes
absolute defocus for an eye in focus at ~589 nm. For
an eye in focus at my, the defocus at other wavelengths

m will be
D(m, Wlo) = D598(Wl) — D589(n10). (13)

This can be converted to a Zernike defocus coefficient
in micrometers by the formula

0 (m,mo)d2

TN (14)
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where d is the pupil diameter in mm. This function is
illustrated in Figure Al for the case of focus at 555 nm
and a 6 mm pupil.

With defocus coefficients computed in this way, and
added to the existing set of coefficients for each eye, a
set of monochromatic OTFs was constructed for each
wavelength. These OTFs were weighted by values of
the photopic luminosity function at the corresponding
wavelengths (normalized by their sum), and added
together to create the polychromatic OTF.

Computing NTF

In Watson and Ahumada (2008), the NTF was
derived by dividing a standard contrast sensitivity
function by a hypothetical mean optical transfer
function. Here we simplify the process by creating a
function that approximates the previous result. First,
we computed an array of discrete samples of the NTF
as described in Watson and Ahumada (2008). We used
a frequency scale value of 2, as defined in that
publication. We then fit an EmG (exponential minus
Gaussian) function (Watson & Ahumada, 2005) to
those samples. The best fitting parameters were: fy =
33.3573, f1=5.37916, g=3.32619, loss =0.923853. We
then multiplied this function by the OEF with
standard parameters (Watson & Ahumada, 2005).
This function was then normalized to a peak value of
1. The final result was then used to compute the NTF
component of the NOTF. This function is illustrated
in Figure A2.

0.02

0.01

2 5 10 20 50

100 200
Spatial frequency (cycles/deq)

Figure A2. NTF used in the simulations. The filter is shown on the left, on the right is a cross section (half of one row) at vertical frequency

=0.
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Acuity Model Demonstration
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This demonstration illustrates a model of visual acuity. It shows measurement of visual acuity for a particular set of optotypes. A Quest procedure is used to
vary the size of the optotypes to find the size that yields a particular percent correct (target probability). The simulation makes use of wavefront
aberration data for ten eyes from the Indiana Aberration Study (Thibos, Hong, Bradley & Cheng ,2002). The demonstration allows the user to select
the optotype set, a particular eye, the number of trials/letter in the simulation, the Quest jitter (that determines how widely trials are distributed
over size), and the target probability. The optotype set, the pointspread function, and the simulated data are shown. The PSF images are either
shown with a constant gain, or each one boosted to maximum contrast (for display only). This demonstration accompanies the article: Watson,

A. B., & Ahumada, A. J., Jr. (2012). Modeling acuity for optotypes varying in complexity. Journal of Vision. Date of this version: 2012/07/28.

Figure A3. Demonstration of estimating model acuity using Quest.

Resizing optotypes characters. In our simulations, these letter images were
scaled to obtain the complete set of 32 sizes. To obtain

Optotypes were provided to us in the form of binary each size, the original images were magnified or
(0 or 1) digital images, with sizes approximately 40 x 40 minified using the Mathematica ImageResize operator
pixels for Sloan letters and 50 x 50 pixels for Chinese (Wolfram Research, Inc.). Each character is centered in
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a 256 x 256 background image with a constant value
of 1.

Estimating model acuity

To estimate acuity from the model we use the Quest
adaptive procedure (Watson & Pelli, 1983). We select
an optotype set and an IAS eye and precompute the
matrix C (Equation 2) for each of the 32 letter sizes
used by Zhang et al. (2007). We simulate K trials, one
per optotype, at the middle size. Based on the model
performance, Quest estimates the location of the acuity
threshold, expressed as a likelihood function of the 32
letter sizes. The mode of the likelihood function is
selected as the new size, and another K trials are
presented. We again estimate a new location for
threshold, and this process continues until 7 are
completed for each letter. The resulting data are then
fit by a normal distribution function of log size, using a
maximum likelihood method (Watson, 1979), to yield
an estimate of the letter size yielding the target
probability correct. The Quest method provides a
highly efficient way of estimating acuity from the
model.

To illustrate this method, we provide a
demonstration of an actual estimation of one acuity
(Figure A3). The reader can select a set of optotypes
and an IAS eye. One can also set several parameters of
the method, including trials per optotype 7, the target
probability, and the Quest jitter. The last value is the
width of a uniform distribution from which a number is
drawn that is added to the selected test location at each
step, in order to spread out the trials over more of the
psychometric function. In actual use, this parameter
was set to zero.

Computation of power spectral density

At times in this paper we have made use of the
parameter ¢ to describe the standard deviation of the
independent normally distributed noise samples added
to each pixel in the simulated neural image. From the
point of view of simulation, this is a convenient
parameter. However, because this noise is in the
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domain of the neural image, the value estimated for a
given set of data will depend on (a) the spatial
resolution of the simulation, and (b) the normalization
of the neural transfer function.

There is no unique method of normalizing the neural
transfer function. The optical transfer function, which
converts light into light, and does not alter the total
quantity of light, has a natural gain of 1 at DC (0
cycles/deg in horizontal and vertical frequency). For
the neural transfer function, we have normalized it to
its peak, as shown in Figure A2. Thus the combined
transfer function, the product of neural and optical
transfer functions, will have a peak gain that is typically
somewhat less than 1, depending on the amount of
optical attenuation around the peak of the NTF
(around 5 cycles/deg). For the complete set of 200
IAS eyes, the mean is 0.414581 and the standard
deviation is 0.096861.

An expression that characterizes the noise in a
manner that is independent of spatial resolution is
provided by the power spectral density, given by the
expression

N = ¢*dxdy (15)

where dx and dy are the width and height of a single
pixel. As an example, the estimate of ¢ for Sloan letters
derived from confusion data is 0.257908. In the
simulation, dx = dy = 0.00264993 deg (0.158996
arcmin). Thus,

N = 0.257908% x 0.00264993° = 4.67 x 107",
(16)
Contrast energy in dBB

A convenient unit for the expression of contrast
energy thresholds or visual power spectral densities is
dBB (Watson & Ahumada, 2005; Watson, Taylor, &
Borthwick, 1997). This is given by

dBB(x) = 101log;(x) + 60. (17)

This is a decibel measurement of energy or power,
adjusted so that 0 dBB approximates the minimum
visible contrast energy for a sensitive human observer
(Watson, Barlow, & Robson, 1983). In the example of
Equation 16, the result would be —3.306 dBB.
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