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Abstract
We previously proposed a flicker visibility metric for bright 
displays, based on psychophysical data  collected at a high mean 
luminance. Here we extend the metric to other mean luminances. 
This extension relies  on a linear relation between log sensitivity 
and critical fusion frequency, and a linear relation between 
critical fusion frequency and log retinal illuminance. Consistent 
with our previous metric, the extended flicker visibility metric is 
measured in just-noticeable differences (JNDs).
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1. Objective and Background
Flicker is a perceptual attribute of displays  that consists of an 
apparent fluctuation in brightness of a rapid periodic modulation 
of luminance. Display flicker is a significant  potential  defect of 
most current display  technologies, because they periodically 
refresh the displayed image. Human visual sensitivity to variation 
of luminance over time is defined by the temporal contrast 
sensitivity function (TCSF). This function describes visual 
sensitivity  as a function of temporal frequency of luminance 
modulation. The TCSF falls rapidly at high temporal frequencies, 
reaching a minimum of 1 at the Critical  Fusion Frequency (CFF). 
Thus flicker is usually avoided if the display  is refreshed at a rate 
above the CFF. However advanced display  technologies such as 
scanning backlights, field  emission displays, plasma displays, 
frame sequential color, and time-multiplexed stereo may introduce 
flicker artifacts (Zhang et al., 2007).

We have previously proposed a metric for flicker visibility 
(Watson & Ahumada, 2011). That metric was based on a 
theoretical temporal contrast sensitivity  function (TCSF) fit  to 
psychophysical thresholds measured by (De Lange, 1958) for a 2 
deg circular flickering  disk on a uniform background of the same 
time average luminance. The theoretical function was based on a 
Gamma function impulse response (Watson, 1986). 

The retinal illuminance used by De Lange in the data we used was 
1000  Td, which  is approximately that obtained in a 30 year old 
eye viewing a 100 deg2 adapting field with a luminance of 60 cd 
m-2 (Watson & Yellott, 2012). It is well known that the TCSF 
depends upon mean luminance (Watson, 1986). Indeed, de Lange 
himself produced data for a range of retinal  illuminances. We 
have made use of those data to extend our metric to a range of 
mean luminance.

2. Methods
De Lange provided data for two observers  at a range of adapting 
retinal illuminances (De Lange, 1958). We begin with the 
observation that at  a given  retinal illuminance, the high-frequency 
limb of the TCSF is approximately linear when log contrast 
sensitivity  s is plotted against linear frequency f. If we transpose 
the data (exchange x and y  coordinates), we have a graph of 
fusion frequency f plotted against log contrast sensitivity  s (Figure 
1). Note that log contrast sensitivity may also be regarded as -log 
contrast. 

At each retinal illuminance, it is possible to fit these data with a 
straight line: a linear function of s. Since each straight line would 
have two parameters, this would  result in a model with a number 
of parameters equal to 2 times the number of retinal illuminances. 

To reduce the number of parameters, we have made use of the 
Ferry-Porter Law, which states that  CFF is proportional to  the log 
of the retinal illuminance (Tyler & Hamer, 1990). Thus at s = 0 (a 
contrast of 1), the vertical  intercept of each straight  line should 
itself be a linear function of retinal illuminance. We assume in 
addition that the Ferry-Porter Law applies at  lower contrasts. In 
particular, we assume that at  s = 1 (a contrast of 0.1) the 
intercepts are again a linear function of retinal illuminance. This 
allows us to use a linear model to also compute the slope and 
intercept of each line relating frequency to log sensitivity.

If we write s for log sensitivity  and t for log retinal illuminance,  
and we write f(s,t) for the predicted  fusion frequency (Hz) at the 
corresponding values of s  and t, then we parameterize out bilinear 
model by the following four quantities:

f1 = f(0,3)

f2 = f(1,3)

f3 = f(0,0)

f4 = f(1,0) (1)

These are four fusion frequencies, two for a contrast of 1 at a 
retinal illuminance of 1 Td, and the other two for a contrast  of 0.1 
at a retinal illuminance of 1000 Td. Then after algebraic 
manipulation it is possible to show that the bilinear formula for 
CFF is 

f s,t( ) = f3 + s f4 − f3( )
+1/ 3 t  ( f1 − f3 + s ( f2 −  f1 + f3 − f4 ))

 (2)

3. Results
We have fit this model to the high-frequency data of de Lange for 
observers L and V. We minimized the RMS error in  the vertical 
(Hz) direction. We varied the number n  of high frequencies, from  
the data set for each retinal illuminance, included in the fit. The 
results for observer L and n =5 are shown in Figure 1. The 
residual RMS error is 1.6 Hz. The estimated parameters are:  f1 = 
62.1, f2 = 45.3, f3 = 23.8, f4 = 10.5.
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Figure 1. High frequency data of de Lange (1958) observer 
L and fit of the bilinear model for n = 5. The locations of the 
estimated parameters are also shown.
Equation 2 can be rearranged to compute the sensitivity  as a 
function of frequency,

s f ,t( ) =
3 f + f3 −3+ t( )− f1t

f3 − f4( ) −3+ t( )+ (− f1 + f2 )t
 (3)

Since the flicker visibility  metric is  only concerned with the high-
frequency portion of the TCSF, this formula suffices to compute 
TCSF values, and thereby to compute flicker visibility values in 
JNDs. 

For clarity, we show in Figure 2  the more traditional view of 
temporal contrast sensitivity data along with predictions from 
Equation 3. 
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Figure 2. Data of de Lange (1958) observer L and the 
bilinear model sensitivity curves.
Looking at  Figure 2 it  is evident that the point  at which the data 
depart from linearity  is  not clearly defined. In  Figure 3 we show 
the RMS error of the fit for various values of n. The errors are 
higher, and climb more rapidly  with n, for observer V. We select n 
= 5 for further consideration, as a compromise between robust 
parameter estimation and minimizing error.
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Figure 3. RMS error of fit of the bilinear model to data of de 
Lange (1958) obervers V and L as a function of n, the 
number of high frequencies included in the fit. 
For comparison, we show the fit for observer V for n  = 5, which 
suggests that much of the error is  attributable to the highest retinal 
illuminance, which was not used with observer L.
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Figure 4. Data of de Lange (1958) observer L and the 
bilinear model sensitivity curves.
In Figure 5 we show the dependence of parameter estimates on 
observer and on the value of n. The plot shows that the parameter 
estimates are quite robust and only weakly dependent on the value 
of n.  The two observers  do differ somewhat  in their estimates for 
parameters f1 and especially f2.

For reference, in Table 1 we provide parameter values  for the two 
observers, based on n = 5.
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Figure 5. Parameter estimates for observers L and V of de 
Lange (1958), as a function of n, the number of high 
frequencies included from the data set for each retinal 
illuminance. Each set of six successive points are for n= 
3,... 8.

Table 1. Parameter estimates for the two observers of de 
Lange (1958), based on the highest five frequencies from 
each retinal illuminance.

ObserverObserver
V L

f1 54.8 62.1
f2 36.3 45.3
f3 23.3 23.8
f4 10.3 10.5

RMS 1.88 1.58

4. Discussion
We have provided a bilinear model of the high-frequency portion 
of the TCSF, based on data of de Lange, and on an assumption 
that the Ferry-Porter law remains valid for contrast values below 
1. The model is a reasonable fit to the data.

In the above formulation, the quantity t refers to the log of the 
retinal illuminance. Typically, retinal illuminance is not  known, 
but rather the display luminance is specified. Using a recent 
formula, we can compute an expected retinal illuminance from the 
display luminance and other contextual information (Watson & 
Yellott, 2012).

In the following example, we assume that a display of 314 square 
degrees is viewed binocularly in an otherwise darkened room by 
an observer of age 30. Under these conditions, from the 
luminance we can compute the predicted pupil diameter, and 
thence the retinal illuminance. From that we can predict the 
expected sensitivity at high frequencies, as shown in Figure 6. For 
comparison, we also show the predictions from the earlier model 
of Watson and Ahumada (2011) designed for moderate to high 
luminances.
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Figure 6. Predicted sensitivity at high frequencies for 
observer V of de Lange (1958) for three display luminances. 
The dashed red curve is the prediction from (Watson & 
Ahumada, 2011).
Farrell and colleagues (1986; 1987), using a somewhat different 
approach, also proposed a flicker metric for arbitrary display 
luminances, but their metric did not exploit the Ferry-Porter Law. 
In future work we will compare their metric to ours.

To advocate a particular version of this  metric as a standard, it 
will  be necessary to resolve the differing parameters  for the two 
observers, or perhaps to collect new data on a larger set of 
observers. 
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