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We have implemented a model of contrast gain control in human vision which incorporates a

number of key features, including a contrast sensitivity function, multiple oriented band-pass

channels, accelerating nonlinearities, and a divisive inhibitory gain-control pool. The parameters of

this model have been optimized through a fit to the recent data that describe masking of a Gabor

function by cosine and Gabor masks [Foley, J. M. (1994). Human luminance pattern mechanisms:

masking experiments require a new model. Journal of the Optical Society of America A 11(6),

1710-1719]. The model achieves a good fit to the data. We also demonstrate how the concept of

recruitment may accommodate a variant of this model in which excitatory and inhibitory paths

share a common accelerating non-linearity, but which include multiple channels tuned to different

levels of contrast [Teo, P. C. & Heeger, D. J. (1994). Perceptual image distortion . Proceedings,

ICIP-94, Austin, Texas, IEEE Computer Society Press, II,  pp. 982-986].
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1.  INTRODUCTION

With some notable exceptions, spatial patterns are most easily seen against a uniform

background; backgrounds that contain spatial patterns typically raise visual thresholds.

Understanding this phenomenon of pattern masking is an important part of understanding the

process of pattern detection and pattern visibility in general.

Visual masking describes a broad range of phenomena, which may be arranged in various

operational or theoretical taxonomies. Here we deal exclusively static target and masking patterns

that appear simultaneously and vary only in regard to their relative intensities on successive

displays. In addition, the mask is a simple pattern such as a sinusoid or Gabor function. We will

call this pattern masking. Considerations associated with stochastically defined masks such as

visual noise remain outside the scope of the current paper.

There are two traditional explanations for pattern masking. In one, the mechanism detecting

the target has a nonlinear, compressive response. The mask activates this mechanism, and pushes

its response into the compressive range. The differential between responses to mask alone and

target+mask is thereby reduced, and threshold elevated1, 2. In the second explanation, the mask

inhibits the target detection mechanism, either directly or through other mechanisms. More

recently, models have been proposed which incorporate both of these mechanisms within a process

of contrast gain control3, 4, 5. These psychophysical models are largely inspired by recent analyses

of the response properties of single visual neurons in primary visual cortex6, 7, 8. Here contrast

gain control is a mechanism that serves to keep neural responses within their permissible dynamic

range while retaining the information conveyed by the pattern of activity over the neural ensemble.

In the normalization model of Heeger8, each neuron has an accelerating nonlinearity but is also

inhibited divisively by a pool of responses of other neurons. In the psychophysical model of Teo

and Heeger that is closely based upon this cortical normalization theory, masking occurs through
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the inhibitory effect of this normalizing pool. Foley’s model of masking also incorporates a

divisive inhibitory pool.

Despite their success in predicting certain masking data, there remain reasons to consider

alternative models.  Foley’s model was designed to predict results for a narrow range of

experimental stimuli, and can make no predictions for other stimuli. To accommodate generic two-

dimensional stimuli, we require that the model be image-driven, that is, it must accept images as

inputs. The Teo and Heeger model is image-driven, but does not specify certain aspects, such as

the contribution of different spatial frequencies to the inhibitory pool. In addition, their model

places a rigid constraint on the form of the nonlinearity, which in turn obliges them to posit

multiple mechanisms responsive to different ranges of contrast. The model of Wilson and

Humanski is particularly concerned with temporal dynamics of the gain control process, and

consequently devotes less attention to spatial details.  Cannon and Fullencamp have developed an

image-driven model that incorporates a gain control process, but it is designed only to predict

estimates of apparent contrast9.

Additional impetus for a general image-driven model of spatial masking arises from the

enduring search by various engineering communities for a practical and accurate model of the

visibility of spatial patterns. In contexts such as display design and image compression, the model

must be general enough to deal with any imagery that might be displayed or compressed.

Parameter-driven models designed to deal with simple patterns such as several sinusoidal gratings

typically offer little guidance on what to do with complex images such as photographs. There have

in fact been numerous efforts to develop image-driven  models for evaluation of image quality10,

several of which incorporate pattern masking mechanisms. The model of Daly11 is particularly

complete, but does not directly predict detection thresholds. The model of Lubin12 does predict

thresholds, but like Daly’s, assumes that contrast gain control occurs only within a channel.
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To explore the various elements of the contrast gain control process, and to provide a general

image-driven model of pattern masking that might be used in applied contexts, we have developed

a model of pattern masking based on contrast gain control. We have applied this model to recent

psychophysical results of Foley (1994), with generally excellent results.

2.  MODEL

As discussed in the introduction, most of the existing models of masking and contrast  gain

control  share many  features. Likewise it is unclear at this time precisely which features are

essential to successful prediction of human experimental data. Consequently we designed a model

with a modular structure, whose building blocks correspond to a large extent with specific

individual assertions about the processing of luminance contrast signals.

A.  Generic Model

An overview of this generic model is pictured in Figure 1. The input to the model is a pair of

images. These might be, for example, the two images presented to an observer in a two-alternative

forced-choice experiment. Each image traverses an identical set of processing stages, which are

illustrated for image 1. The first stage is a linear filter bank. In general, the output of this stage will

be a set of filtered images, one for each filter in the bank. Borrowing a term from signal

processing, we call these sub-bands13. The next stage is a sampling operation, which may alter the

number and positions of samples in each sub-band.

At this point, the signal forks into excitatory and inhibitory paths, each of which begins with a

point nonlinearity. The inhibitory stage is then subject to a second linear filtering operation, which

we characterize as a pooling operation. This pooled signal then drives an inhibitory operation upon

the excitatory path.

Finally, the processed representations of the two images are compared, leading to a decision.
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Figure 1. Outline of the generic image discrimination model incorporating contrast

gain control.

This generic model can clearly accommodate a wide range of specific choices regarding

filtering, nonlinearities, the inhibitory process, and the comparison mechanism. In the next section

we describe the specific choices we have made, and compare them to those made by other

comparable models.

B.  Specific Model

Our specific model is illustrated in Figure 2. It shows the various choices we have made

regarding the generic components. These are discussed in more detail in the following sections.
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Figure 2. Outline of the specific model used in our contrast gain control model of

pattern masking.

C.  Example stimuli

To illustrate the behavior of the model it will be useful to consider a pair of example stimuli, as

shown in Figure 3. The constituent parts are shown in Figure 3a and b: a cosine grating at a

frequency of 4 cycles/image and an orientation of 45°, and a vertical Gabor function of the same

frequency. These elements are combined to form the two signals of a two-alternative forced-choice

detection task. In Figure 3c) is the mask alone at 25% contrast, and in d) the mask is combined

with a 50% contrast Gabor target.
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a b

c d

Figure 3. Example stimuli to illustrate the operation of the model: a) cosine mask at

45° orientation, b) Gabor target, c) mask at 25% contrast, d) mask at 25% contrast

plus target at 50% contrast.

D.  Contrast Sensitivity Filter

Variations in contrast sensitivity can be incorporated into a filter bank model in either of two

general ways. The first is to set the gain of each of the filters in the bank in such a way that the

ensemble produces the empirical contrast sensitivity. The second is to place a single contrast

sensitivity filter (CSF) at the front end, and to calibrate the remainder of the model in such a way

that it introduces no further variations in contrast sensitivity. There are many issues involved in this

decision, but here we take the latter course.

The contrast sensitivity filter was designed to match in shape the CSF measured with Gabor

stimuli. The data in Figure 414, show that a parabola in log-log coordinates is a reasonable

description of this function. This log-log-parabolic filter is then implemented as a digital filter, with

parameters of peak sensitivity, peak frequency, and log bandwidth.
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Figure 4. Contrast sensitivities for one-octave Gabor targets as a function of spatial

frequency, fit by a parabola in log-log coordinates (from 14). The parameters are peak

sensitivity = 62.24, peak frequency = 1.04 cycles/degree, and log bandwidth at half

height = 1.118.

E.  Gabor Array

We have experimented with two different multiple-channel filter banks. The first is the set of

filters defined by the Cortex Transform15, as modified by Daly11. The second, from which all of

the results below will be derived, is a filter set that we call the Gabor Array. It is a collection of

Gabor filters that vary in spatial frequency, orientation, and phase. It is convenient to consider the

filters as forming an array, in which  each row corresponds to a particular spatial frequency, and

each column to a particular orientation, as shown in Figure 5. The distinctive feature of this type of

filter bank is the Gabor shape for each filter, and the rectangular sampling of the orientation-log

frequency plane. Within these constraints, there is freedom in selection of frequency spacing and

bandwidth, and orientation spacing and bandwidth. The output of the filter bank is an array of

images equal in number to the number of filters, and each equal in size to the input.
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In Figure 5 and succeeding figures, we illustrate the bahaviour of the model as it responds to

signal and mask. In these illustrations, we show a Gabor Array with three frequency bands and

four orientation bands, with one octave frequency bandwidths, and other parameters set to

reasonable values. However, the actual values of model parameters used in fitting experimental

data may differ and are given later in this paper.

a b

Figure 5. A Gabor Array filter bank, with three spatial frequencies and four

orientations. The transfer functions (a) and even impulse responses (b) of each filter

are shown, all scaled to unit amplitude.

Although we describe many of the mechanisms of this model in image-processing terms, we

emphasize that the underlying physical model is that of arrays of visual neurons. Where possible,

we make use of simplifying assumptions or algorithms. One of these relates to the sign of our

elementary responses. Cells in primary visual cortex typically have little or no maintained

discharge, and it seems likely that they signal only with positive responses. To a first

approximation they appear to half-wave rectify their underlying linear responses16.  It is

conventionally assumed that positive and negative deviations of the stimulus are signaled by pairs

of complementary neurons that are 180° out of phase, much like the on and off center cells at earlier

levels of the visual pathway. This leads to a set of four hypothetical phases of the individual

receptive fields: 0°, 90°, 180°, and 270°. Since in the absence of response noise only one of each

opposed pair will respond to a given  signal, we simulate this situation with just two phase
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receptive fields (0° and 90°), each of which produce a signed responses. It should be understood

that a negative response simulates the positive response of a negative phase cell. The pictures

throughout this paper which show both positive and negative deviations from zero should be

viewed as the ensemble response of two sets of opposite phase neurons. Likewise mathematical

expressions which depict responses indexed by phase should be understood to represent all-

positive responses at one of four phases.

A second obvious approximation in our simulation of neural populations is that ours is a

sampled model in which a set of neurons at representative points in space, frequency, orientation

and phase are used to approximate the presumably more continuous distribution in nature.

The Gabor Array filter bank is implemented as a set of analytic filters, which produce a

complex output from a real input17, 18. The real and imaginary parts of this complex response

represent the responses of even (0° and 180°) and odd (90° and 270°) filters, respectively. Likewise

positive values represent responses of 0° and 90° phase neurons, while negative values represent

responses 180° and 270° phase neurons.

F.  Sampling

To this point, the model has multiplied the dimensionality of the signal by a factor equal to the

number of filters. While there is some reason to believe that the primary visual cortex may

oversample its retinal input, and while such oversampling may have advantages in terms of shift

invariance, there are also powerful advantages to down-sampling the lower frequency channels.

First, this allows a “pyramid” style of representation, in which each sub-band is  sampled in

proportion to its characteristic spatial wavelength. Second, downsampling in proportion to

wavelength greatly reduces the amount of subsequent computation required.

We have experimented with both down-sampled and un-sampled representations, and have

generally found that within the limits of our experiments, and provided that the filters are
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appropriately normalized (see below), we obtain very similar results. We have therefore worked

mainly with the sampled variant since it is computationally much more efficient.

Specifically, for our octave-spaced frequency channels, we have down-sampled each sub-

band in each spatial dimension by a factor of 2L, where L is the level which is 0 for the highest

frequency band. Our Gabor filters have a center frequency of N 2-L-1 for each level, where N is the

Nyquist frequency of the input. Down-sampling by of 2L  will preserve information provided the

response at that level has no energy above N 2-L, that is, one octave above the filter frequency. This

is approximately true for Gabor filter bandwidths of less than about 1.5 octaves.

Figure 6 shows the down-sampled real response array to the mask alone (a) and the

mask+target (b) example stimuli. Each row contains response images for one spatial frequency,

while each column corresponds to a particular orientation. The arrangement is the same as for the

filters in Figure 5(b). Note that due to downsampling, the number of samples in the third row is

sixteen times fewer than in the first row. As expected, the mask-alone responses appear primarily

in the sub-band at the corresponding frequency and orientation, while the mask+target responses

also show activity in the sub-band tuned to the target. As noted above, the filters produce both real

and imaginary response images; here and in subsequent figures we show only the real part.

a b

Figure 6 Responses of the Gabor filter bank to mask alone (a) and mask+target (b).
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G.  Excitatory Non-linearity

Each scalar sample in the excitatory path undergoes a power law nonlinearity with an exponent

of p . In the model of Foley, this is typically a value between 2 and 3, while in the model of Teo &

Heeger it has a value of 2. Note that even and odd samples separately undergo this nonlinearity. In

addition, the nonlinearity is applied to the unsigned response magnitude, to which the sign is then

re-attached. This conforms to the sign-preservation premise described above.

a b 

Figure 7. Responses following the excitatory nonlinearity to a) mask, b)

mask+target.

Figure 7 shows responses to mask-alone and mask+target following the excitatory non-

linearity. Comparison of Figure 6 and Figure 7  shows that the excitatory nonlinearity tends to

suppress small responses, and amplify large ones.

H.  Inhibitory Non-linearity

The inhibitory nonlinearity is identical to that in the excitatory path, except for a possibly

different exponent q. We have generally investigated values of q  = 2. In Foley’s model this

exponent is less than p, and usually around 2. In Teo & Heeger’s model it is 2.
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I.  Inhibitory Pooling

The pooling operation in the inhibitory path linearly combines signals over the five dimensions

of phase (0°, 90°, 180°, 270°), frequency, orientation, and space (x and y). In its most general

form, this combination would be specified by a five-dimensional kernel that is itself a function of

five dimensions. We make the following simplifying assumptions. We assume complete

summation over phase. This agrees with Teo & Heeger’s model, while Foley’s model does not

address this point. We also assume that pooling is shift invariant over level (log frequency),

orientation, and space. These two assumptions allow us to implement the pooling by way of a

convolution operation in the transform domain. Specifically, let the filter responses be written

tu x, ,φ  , where u L= ( ),θ  specifies the level and orientation of the sub-band, x  specifies location

within the sub-band, and φ  is phase. Then the pooled response can be written as a convolution

with a pooling kernel H,

t Hu x
q

u x, , , ,φ φ∗ (1)

Because it is a convolution, it can be implemented by way of multiplication in the frequency

domain. This is “circular” convolution, in which the borders of the two operands are implicitly

connected at their edges (toroidal boundaries). While this is a natural assumption for the periodic

orientation dimension, it will cause wrap-around errors in spatial and frequency dimensions unless

buffer regions are inserted, as we have done. In the phase dimension, we have always assumed

perfect summation, so the calculation reduces to a four-dimensional convolution. In the sampled

case, the sub-band size varies with frequency, so that it must be expressed as a set of separate

three-dimensional convolutions at each spatial frequency. In this sampled case we have also, for

simplicity, assumed no pooling over spatial frequency.

As a further simplification, we have considered only separable Gaussian kernels, which may

be specified entirely by width in orientation, space, and (in the un-sampled case) frequency. An
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example pooling kernel is shown in Figure 8. This example specifies almost complete pooling over

orientation, but very little pooling over space. Because each row is a separate three-dimensional

kernel for one spatial frequency, pooling over frequency is not represented. The three-dimensional

Fourier transforms of these kernels, which are used in the convolution, are also shown.

Kernel Filter

a  b

Figure 8. Example set of three inhibitory pooling kernels, one for each level (a), and

their corresponding 3D Fourier transforms (b).

Foley’s model employs a combination rule in which filter responses to similarly oriented target

and mask components are combined linearly before the nonlinearity, but responses to differently

oriented target and mask components are combined after the nonlinearity.

The output of the inhibitory stage has the same dimensions as that of the excitatory stage, and

is intended to represent the aggregate inhibitory signal that will control the gain of each neuron.

This output is illustrated in Figure 9 for the two example stimuli. Note that the complete summation

over phase has produced a de-modulated, all positive signal, and that the inhibition extends broadly

over orientation but is confined largely to one band of spatial frequency.
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a  b 

Figure 9. Response of inhibitory path to the mask-alone (a) and mask+target (b).

J.  Divisive Gain Control

After pooling, the inhibitory path controls the gain of the excitatory path through a divisive

operation,

r
t

b t Hu x
u x
p

q
u x
q

u x

, ,
, ,

, , , ,
φ

φ

φ φ

=
+ ∗

(2)

The gain-control expression contains a positive constant b, which defines the point at which

saturation begins and also prevents division by zero. A similar divisive formulation is common to

most models of contrast gain control2, 3, 5, 8. Some further comments on the parameterization of

this expression are provided in the appendix.

This divisive operation is applied on a sample-by-sample basis. Figure 10 shows the results

for our example stimuli.
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a b

Figure 10.  Normalized responses to mask-alone (a) and mask+target (b).

K.  Comparison

At the comparison stage, the normalized responses to the two stimuli are subtracted. This step,

which is common to most models of masking, is consistent with simple ideal observer theory, but

is one of the steps most susceptible to criticism. It assumes, for example,  that the observer has a

photographic memory for the two images.

L.  Decision

We adopt a simple probability summation rule at the decision stage. A Minkowski summation

(Holder Norm) with exponent β  is applied to the response differences,

d r ru x u x= −





∑ 1 2

1

, , , ,

/

φ φ

β
β

.  (3)

The differences are assumed to be at threshold, and the images discriminated, when d>1.

Figure 11 shows the real part of the differential response, after it is rectified and raised to the

power β=4. This result is shown both for the example target Gabor of 50% contrast that has been

used in the previous figures, but also for a target contrast of 17% approximately the threshold

value found for this configuration of target and mask5. Though there are also sizable responses at
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other points, it is clear that the largest response is, as expected, at the center of the Gabor target.

This is particularly true for the near-threshold responses in Figure 11b.

Figure 11. Differential response raised to the power β=4 for the example stimuli: a)

target contrast = 50%, b) target contrast = 17%. For clarity, both images are

displayed at full contrast; in a) the largest value is 195.3, in b) it is 1.3.

This decision rule has a number of possible interpretations. The first interpretation is that of

probability summation among independent high-threshold mechanisms. Each neuron

independently determines whether on a given trial its response in the two intervals differed by a

criterion amount, and if this criterion is met in any neuron, the correct interval is selected. If the

exponent is 2, then this rule is equivalent to an ideal observer of a signal known exactly, applied to

the normalized responses.

M.  Channel Filter Normalization

We have elected to place all of the variation in sensitivity with spatial frequency in a CSF filter

that precedes the Gabor filter bank. In particular, we normalize each level of the Gabor filter array

in such a way that the CSF filter specifies the approximate sensitivity to one-octave Gabor signals

at each frequency of the array.



Contrast Gain Control

18

This normalization is accomplished in the following way. Consider the Gabor filter at u={f,0}

(the orientation is not important, but we will assume that a filter at orientation 0 exists). We write

the response of this filter to a unit amplitude one octave Gabor signal at frequency f as Gf  . Then

with no mask and assuming that the inhibitory signal is negligible, we have

d b Gq
f= 





− ∑
β

β1

( 4)

 The set of filters at frequency f is then scaled by d-1. In the absence of a CSF filter, the

threshold amplitude for the Gabor would then be 1; in the presence of the CSF filter it will have a

threshold equal to the inverse of the value of the CSF at the corresponding frequency. This

approximation neglects the contribution of all channels but the one at the frequency and orientation

of the Gabor, which in most cases will be minor.

3.  SIMULATIONS

A.  Computational Methods

The model described above was implemented in the Mathematica programming language19.

The model contains a number of parameters that affect the size of the computation. Most

importantly, these are D, the width in degrees of the simulated  square area of visual field, and F,

the spatial frequency in cycles/degree of the highest channel simulated. Together, these parameters

specify  the sampling density of the images. Thus P, the image width in samples, is usually equal

to 4 D F. Most of the data we simulate here concern small targets that can be largely contained

within an area of 2 degrees on a side. In addition, they all have spectra centered at 2 cycles/degree.

Therefore most of the simulations we show are for F=4 cycles/degree, D=2 degrees. Thus the

stimuli, and the response image in one sub-band at the highest frequency, are represented by

images 32 pixels on a side. We have experimented with larger sizes, and found little change.

Another  important factor is O, the number of orientation channels simulated. A final factor is C,
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the number of spatial frequency channels simulated. Once the highest frequency is chosen, adding

lower frequencies spaced an octave apart adds relatively little computational effort (about 30%) in

the down-sampled case. In the down-sampled case, the total number of samples in the response

array is approximately 26 O F2 D2 /3. For example, with a field width of 2 degrees, three

frequencies (1, 2, and 4 cycle/degree)  and eight orientations, the number of complex response

samples is 10,752. For reference, we provide in Table 1 a summary of model parameters,

variables, and simulation control parameters.

Model Parameters

a CSF peak amplitude
f0 CSF peak frequency
w CSF log bandwidth
p excitatory exponent
q inhibitory exponent
b saturation constant
sx pooling width in x or y
sθ

pooling width in orientation

sf pooling width in frequency
k octave bandwidth of Gabor filters
β Minkowski exponent

Model Variables

tu x, ,φ
Gabor filter response

ru x, ,φ
normalized response

d decision variable, analogous to d’

Simulation Control Parameters

O number of orientations simulated
D width in degrees of the square simulated area
P width in pixels of the square simulated area
F spatial frequency in cycles/degree of highest channel
C number of octave-spaced frequency channels

Table 1. Model Notation.
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B.  Effect of Mask Orientation

Foley and Boynton5, 20 collected data for detection of a 2 cycle/degree, 0° orientation Gabor

target added to a 2 cycle/degree cosine mask at one of several orientations, or to a combined Gabor

and cosine mask. These stimuli are illustrated in Figure 12.

Figure 12. Stimuli of Foley and Boynton. The first row shows a Gabor target added

to cosine masks at orientations of 0°, 11.25°, 22.5, 45° and 90°. Second row shows

the same Gabor target added to an identical Gabor mask or a Gabor mask plus a

cosine mask at 45° or 90°.

In the experiments depicted by the first row in Figure 12, Foley and Boynton varied the

contrast of the cosine mask at each orientation over the range from -46 to -10 dB in steps of 4 dB.

The first panel of the second row illustrates a contrast discrimination experiment in which a Gabor

target was detected upon a Gabor mask, whose contrast was likewise varied over the range from -

46 to -10 dB in steps of 4 dB. In the final two panels of the second row, the contrast

discrimination experiment was repeated in the presence of an additional cosine mask with fixed

contrast of -20 dB and an orientation of either 45° or 90°. For each experiment depicted by a single

image in Figure 12, the resulting set of data set may be represented by a plot of target threshold vs.

mask contrast, both in dB.

Foley and Boynton presented results from two observers, KMF and JYS. Each complete data

set contains of 88 thresholds, consisting of ten masked thresholds and one absolute threshold from
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each of the panels in Figure 12. We have fit our model to all 88 points of each observer. All model

parameters were optimized separately for each observer, except for q = 2, and sf = 0. Simulation

control parameters were: O = 8, D = 2 degrees, P = 32, F = 4 cycles/degree, C = 3.

The experimental data (points) and simulation results (curves) are shown in Figure 13 and

Figure 14. Individual panels correspond to the separate experiments illustrated in Figure 12. There

are systematic departures, but given the size and complexity of the data set, the fit is quite good.

The RMS errors of the fits are 1.67 and 2.0 dB for KMF and JYS respectively. The optimized

parameters are given in Table 2. Foley noted some key effects in the data: 1) the facilitation for

like-oriented target and mask, 2) the diminished but persistent masking as mask orientation differs

from the target, and 3) the persistence of facilitation in the presence of the fixed cosine mask. All of

these effects, as well as many of the detailed gyrations of the data are captured by the model.
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Figure 13. Data and simulations for observer KMF. In each panel contains an

absolute threshold (no mask) plotted on the vertical axis; the corresponding model

prediction is indicated by a horizontal line.
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Figure 14. Data and simulations for observer JYS.

Parameter Observer

KMF JYS
CSF peak amplitude a 39.58 42.88

CSF peak frequency f0 2.036 1.003

CSF log10 bandwidth w 1.12 1.12

excitatory exponent p 2.323 2.297

inhibitory exponent * q 2. 2.

saturation constant b 0.0203 0.0785

pooling width in x or y sx 1.55 0.53

pooling width in orientation sθ
88.74° 79.74°

pooling width in frequency * sf 0 0

octave bandwidth of Gabor filters k 0.893 1.487

Minkowski exponent β 5.414 4.87

rms error of fit 1.668 1.995

Table 2. Estimated model parameters and rms error for the two observers of Foley

and Boynton. Parameters with asterisks were fixed.

C.  Effect of Mask Phase

In another experiment, Foley and Boynton20 compared the masking effects of cosine masks of

0° and 90° phase. In their model, as in our own, the inhibitory path sums over all phases, while the
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excitatory path does not. Thus facilitation, which depends upon the accelerating non-linearity in the

excitatory path, should be phase dependent, while the masking should be less affected. Their data

are shown in Figure 15. In fact, the data provide only modest support for the absence of

facilitation, but the model, which shows no facilitation, does provides a good fit to the data.

The simulations in Figure 15 were produced by optimizing model parameters for these data,

using the parameters from observer KMF as  starting point. The initial values themselves provided

a reasonable fit, but since the phase data were from a third observer (CCC), a further optimization

was deemed appropriate. The final parameters were very similar to those for observer KMF listed

in Table 2.
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Figure 15. Effect of mask phase. Target was a 2 cycle/degree Gabor function; mask

was a cosine at either 0° or 90° phase relative to the center of the Gabor. Curves are

fits of the model. The 0° prediction is reproduced in light gray in the right hand panel

for comparison.

4.  DISCUSSION

We have constructed an image-based model of contrast gain control whose essential elements

are, in order, 1) a contrast sensitivity filter, 2) linear, oriented, frequency-selective channels, 3)
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excitatory and inhibitory paths with different point non-linearities, 4)  linear pooling within the

inhibitory path over the dimensions of frequency, orientation, phase, and space, 5) division of the

excitatory path by the inhibitory path, and 6) Minkowski pooling over the differential response to

the pair of images to be discriminated. This model is similar in many respects to models developed

by Foley5 and Teo and Heeger3.

The model provides a good fit to masking data in which the orientation of the mask is varied,

in which contrast discrimination is accomplished in the presence of a fixed mask, and in which the

phase of the mask is varied.

A.  Quality of Fit

The rms error of the fit for the two observers is 1.67 and 2.0 dB. This compares to Foley’s

Model3 which he reports to yield rms fits of 1.23, and 1.48 dB. However, the latter model,

despite its lesser generality, contains 12 estimated parameters, whereas ours contains only 9.

(Indeed several of these parameters, notably f0 and sx , have little influence on the predictions.)

Another relevant comparison is the rms error between the two observers: 2.14 dB. We propose

here a “Prediction Turing Test,” whereby we ask whether the predictions of the model could be

identified as such when cast into a hat along with the data of several observers (to truly pass this

test, some noise must be added to our predictions). In this case, the optimized fit of the model is in

each case closer to the data than the data of the two observers are to one another.

B.  Estimated Model Parameters

The estimated values of the excitatory pooling exponent p, 2.323 for KMF and 2.298 for

JYS, are comparable to values of 2.55 and 2.72 estimated by Foley5. However, we fixed the value

of the inhibitory exponent q at 2, while Foley allowed it to vary, estimating values of 2.18 and

2.32. Thus estimates of p-q, which largely determine the log-log slope of the masking data, are

quite similar for the two models.
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The estimated pooling width (Gaussian scale) in orientation is 89° for KMF and 80° for JYS.

This very broad orientation pooling is consistent with estimates obtained by Foley and Boynton.

The estimates of spatial pooling width are 1.55  (KMF), and 0.53 (JYS), expressed in units of

wavelength of the channel frequency, though the predictions are not very sensitive to this

parameter. This suggests very localized pooling over space. Other recent experiments that directly

address the spatial extent of inhibitory pooling, however, also suggest very local pooling21, 22.

Estimates of spatial pooling of contrast gain that are based on apparent contrast, rather than

detection thresholds, appear to yield much larger extents. For example, D’Zmura and Singer23

estimate a Gaussian scale of 6.3 degrees for channels centered at 1.45 cycles/degree, while our

scale at 2 cycles/degree is around 0.5 degree. It should be noted that Foley and Boynton’s

experiments, upon which we have based our simulations, were not designed to explore spatial

pooling. This is clearly a subject for further investigation.

Because the experiments of Foley and Boynton that we simulate employ cosine or Gabor

stimuli of 2 cycles/degree, they do not provide much evidence regarding the size of the pool in the

frequency dimension. In our simulations we have therefore assumed no inhibitory pooling over

frequency. Indeed, simulation results change very little if channels at 1 and 4 cycles/degree are

omitted altogether.

C.  Size and Resolution of Simulations

Predictions of psychophysical performance which rely upon simulations of arrays on neurons

(so-called “neural images”), raise questions regarding the required density of spatial samples, and

of the size of the portion of the visual field that is simulated. Often these questions are finessed by

simulating a very large area at a very high density. Here we have used a more economical

approach, simulating as small a region as possible (usually a 2 degree square) at as low a

resolution as possible (usually 4 samples/cycle for each channel). It is comforting to know that

even smaller simulations yield, with the same parameters, nearly identical results. For example,
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since the results in Figure 13 depend primarily upon the channel at 2 cycle/degree, one can obtain

very similar predictions from an 8 x 8 pixel simulation covering a 1 degree square. We believe that,

regardless of the computational environment, such intelligent economy will prove essential as

researchers attempt to simulate additional dimensions (e.g. time) additional visual functions, and

additional visual areas of the brain.

D.  Pattern vs. Noise Masking

In this paper we have tried with some success to account for one set of masking effects with a

contrast gain control model. Contrast gain control, however, is but one of several means by which

masks may reduce the visibility of a target. For example, masking by intense dynamic white noise

will certainly elevate thresholds, but the conventional interpretation of this elevation is that the

noise adds variance to the decision variable. If the noise is static but white, a statistical

interpretation is still likely to be proffered. As the noise bandwidth narrows, interpretations are

more likely to be in terms of contrast gain control. It seems likely that many “pattern masking”

situations will involve both deterministic contrast gain control and so-called “noise masking”

effects. Some of the masking effects exhibited here may therefore be due to “noise masking.” This

is another area in need of clarification.

E.  Relation to other models

An important distinction between our model and that of Foley is the set of elementary

component responses in which it is expressed. In our model, they are the putative responses of

neurons. In Foley’s, they are responses to the particular stimuli employed in his experiments.  The

virtue of Foley’s scheme is that the number of quantities computed is on the order of the number of

stimuli, while in our scheme it is on the order of the number of neurons, which is typically a much

larger number. The virtue of our scheme is that it can compute the outcome for an arbitrary pair of

stimuli, while Foley’s cannot generalize beyond the particular stimuli employed. A second virtue of

our scheme is that it can embody specific assumptions about the internal machinery, for example an
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assertion that in the inhibitory path there is complete pooling between odd and even phase receptive

field pairs, while such a concept does not even arise in a parameter-driven model.

The most prominent differences between our model and that of Teo and Heeger are the latter’s

use of 1) multiple contrast channels, and 2) exponents of 2 in both excitatory and inhibitory paths.

These two features are related. In general, use of an exponent of 2 in both paths leads to rapid

saturation, so that single neurons cannot respond over the full range of contrast. In our model (and

that of Foley), this is dealt with by having an excitatory exponent slightly larger than the inhibitory

exponent. In Heeger’s model, it is handled by having several channels (usually four) to handle

different parts of the total contrast range.

F.  Recruitment

These two approaches can be reconciled through the mechanism of recruitment. Consider a set

of rapidly saturating neurons, that are all identical save that their input gains vary over a broad

range (like the multiple contrast channels in Heeger’s model). A recruitment mechanism which

linearly sums their responses can behave very much like a single non-saturating neuron. Figure 16

shows as a thick solid line the example of summing the responses of four saturating mechanisms

whose input gains vary in steps of 0.5 log unit (thin solid lines). For comparison, a single non-

saturating neuron with a similar response is also shown as a dashed line. The sum clearly yields a

non-saturating mechanism, though it is not identical to the single non-saturation neuron.

Alternatively, the responses of a set of rapidly saturating neurons could be combined nonlinearly,

say with a Minkowski exponent of  4, reflecting probability summation. We have not studied the

mathematics of this problem in detail, but it is clear that if a larger number of saturating

mechanisms is allowed, or if their output gains are allowed to vary, or if the exponent of the

saturating mechanisms is allowed to vary, then an essentially perfect match can be obtained. Figure

16B shows an example with varying output gains. This means that our model simulations are

consistent with an alternate recruitment model incorporating linear summation over multiple

saturating mechanisms that vary in input gain.
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Figure 16. Thin lines show the responses of a set of saturating neurons with p = q,

and input gains ranging between 0  and 1.5 log units in 0.5 log unit steps. The heavy

solid line is the sum of these responses. The dashed line is the response of a single,

non-saturating neuron with p = 2.4,  q = 2,  a = 1,  b = 1, g = 0.0316. A) p = q = 2,

a = 1, b = 1; B) p = q = 2.4, a = {0.850606, 1.01095, 1.20151, 1.428}, b = 1.

G.  Effect of Duration

The data in Figure 13 and 15 are for targets and masks of 33 msec duration. More recently

Foley has reported data for a duration of 100 msec24, which show a reduced spread of masking

over orientation. Such a change could be accommodated within our model by a change reduction in

the parameter sθ , but such variations should remind us that there are many detailed aspects of

contrast gain control that have yet to be understood. Furthermore, in a practical application such as

evaluation of still image quality, a longer duration is probably more appropriate to mimic typical

viewer behavior.
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H.  Objections to the “Standard Model” of Masking

Recently, traditional models of masking, e.g. 2, which base performance on the differential

response to mask and target+mask of a single neuron, have been questioned25. Nachmias noted

that when discriminating a 10 cycle/degree cosine mask from that mask plus a 2 cycle/degree

target, the overall contrast in each interval of the forced-choice trial could be independently

perturbed, with little effect on performance. While the main target of Nachmias’ critique was the

single neuron postulate, this observation also apparently causes problems for the model presented

here. Adding different contrasts to the two intervals will generally increase our decision variable;

indeed it will typically be non-zero even when target contrast is zero.

However, it should be understood that our’s is a model of discrimination, not identification.

In effect, we are asking whether the two intervals are different, not what they look like. If in

Nachmias’ experiment the observers were instructed to report whether the intervals were different,

then the contrast perturbation would presumably have had a large effect.

But the fact that performance is little changed by this rather radical change in the task does

suggest that the observer’s discrimination algorithm may be sufficiently sophisticated that it can

operate under either set of conditions, and such sophisticated models may be required when more

elaborate psychophysical tasks are explored.

5.  SUMMARY

We have implemented an image-driven model of pattern discrimination that incorporates a

contrast gain-control mechanism. The gain control is achieved by division of the excitatory signal

from each neuron by an inhibitory signal that is a linear combination of responses of neurons

within a neighborhood in space, frequency, orientation, and phase. The model is designed to allow

simple adjustment of the size of this neighborhood. Excitatory and inhibitory paths are each subject

to possibly different accelerating nonlinearities. We have found that this model, with optimized

parameters, provides a good account of pattern masking data. In particular, the model accounts for
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the effect of cosine mask orientation on thresholds for a Gabor target, the effect of a combined

mask consisting of both a Gabor and a cosine, and of the effect of cosine mask phase.

6.  APPENDIX: PARAMETERIZA TION OF NEURAL RESPONSE

A few brief observations on the parameterization of the basic transducer function may be

useful, given the variety of schemes evident in the literature. We begin with an expression that

includes parameters c (signal contrast) gi (input gain of neuron i to signal), a (output gain), b

(saturation constant), p and q (excitatory and inhibitory exponents), and wi  (weight of contribution

to inhibitory pool of neuron i).

a g c

w g c b

k

p

i i

q

i

q

( )
( ) +∑
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q
q
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∑
1

(6)

For simplicity also write g for gk (excitatory input gain). Then the neural response simplifies to

a gc

gcv b

p

p q

( )
( ) +

(7)

The relationships among the parameters may be seen most easily when the transducer is

plotted in log-log coordinates. There it is essentially two straight lines, with slopes of  p and p-q.

The corner between the two segments (the zero of the third derivative) is at c = b/(g v). Figure 17

shows example responses for several values of b.
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Figure 17. Neural response functions for several values of b (0.01, 0.0316, 0.1,

0.316, 1.). The corner of each curve, which occurs at c= b/(gv), is plotted as a point.

Other parameters are v = 0.5, a = 1, g = 10, p = 2.4, q = 2.

The actions of the three parameters a, g, and b on the log-log curve are as follows: a produces

a purely vertical shift; g produces a purely horizontal shift, and b produces both a horizontal shift

and a vertical shift. Because the curve does not change shape, but merely shifts horizontally and

vertically. It is easy to see that there are only two degrees of freedom, and how the parameters may

be interchanged.

For example, to eliminate g, we set

a a g

b b g

p q'

'

=
=

−

(8)

To eliminate b (i.e. b=1), we set

a a b

g g b

p q'

'

=
=

−

(9)
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To eliminate a, we set

g g a

b b a

p q

p q

'

'

=

=

−( )

−( )

1

1
(10)

Note that this last procedure will not work when p = q. In that case, the parameter a is

required, but either b or g can be eliminated.  In optimization of model parameters, it is important

to eliminate these redundancies. We have usually selected a parameterization in which a=1, while b

and g are free to vary.
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