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ABSTRACT

This paper describes Sound Lab (SLAB): a software-based, real-time virtual
audio rendering system designed to work in the personal computer environment
using a standard signal-processing library. SLAB is being developed as a tool for
the study of spatial hearing. The system takes advantage of the low-cost PC
platform while providing a flexible, maintainable, and extensible architecture to
enable the quick development of experiments. The current capabilities and
dynamic behavior of the SLAB system are described from the point of view of the
psychoacoustician user.

1. INTRODUCTION

Interest in the simulation of acoustic environments has prompted a number of
technology development efforts over the years for applications such as
auralization of concert halls and listening rooms, virtual reality, spatial information
displays in aviation, and better sound effects for video games.  Each of these
applications imply different task requirements or emphasize different aspects of
the listening experience that, in turn, require different approaches in the
development of rendering software and hardware. For example, the auralization
of a concert hall or listening room requires accurate synthesis of the room
response in order to create what may be perceived as an authentic experience.
Information displays that rely on spatial hearing, on the other hand, are more
often concerned with localization accuracy than the subjective authenticity of the
experience.  The former requires computationally intensive synthesis of the entire
binaural room response that typically must be done off-line and/or with
specialized hardware. A simpler simulation that emphasizes accurate control of
the direct path, and perhaps a limited number of early reflections, may better
achieve the latter goal.  The fact that such a simulation does not sound "real"
may have little to do with the quality of directional information provided.

Virtual reality applications such as astronaut training environments, where both
good directional information and a sense of presence in the environment are
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desired, may have requirements for both accuracy and some degree of
authenticity or realism.  Achieving these two aspects of the simulation requires
that head tracking be enabled with special attention devoted to the dynamic
response of the system.  For example, a relatively high update rate (about 60 Hz)
and low latency (less than about 100 ms) may be required in order to optimize
localization cues from head motion as well as provide a smooth and responsive
simulation of a moving listener and/or sound source [1-6]. Implementing a
perceptually adequate dynamic response is computationally intensive and
typically requires an array of dedicated digital signal processors and one or more
host computers.

One solution for synthesizing interactive virtual audio has been the development
of hybrid systems [e.g., 5-8]. These systems attempt to reconcile these goals by
implementing real-time processing of the direct path and early reflections using a
model (e.g., the image model) combined with measured or modeled
representations of late reflections and reverberation that have been pre-
computed for a limited set of listener-source positions. During dynamic, real-time
synthesis, only the direct path and early reflections can be readily updated in
response to changes in listener or source position. A densely measured or
interpolated HRTF database is needed to avoid artifacts during updates. Late
portions of the room response typically remain static in response to head or
source motion, or given enough computational power, could be updated in
response to head tracking using a database of pre-computed impulse responses.
Model-based synthesis is computationally expensive but has minimal memory
requirements, while data-based rendering is much less computationally
expensive and has large memory requirements [6].

Both approaches could benefit from further research that specifies the perceptual
fidelity required for adequate synthesis [e.g., 9, 10]. For example, it is commonly
assumed that only the direct-path head-related transfer functions (HRTFs) need
to be rendered at the highest possible fidelity while early reflections may be
rendered with less fidelity, i.e., fewer filter coefficients [8].  However, the number
of coefficients actually used is often based on a designer's best guess and the
limitations of a particular system, rather than on the outcome of perceptual
studies. Such studies could give the designers of such systems better guidance
regarding where to devote computational resources with better assurance that
perceptual validity is not being sacrificed.

The goal of the system described here, Sound Lab (SLAB), is to provide an
experimental platform with low-level control of a variety of signal-processing
parameters for conducting such studies. For example, some of the parameters
that can be examined in future psychoacoustic studies include the number,
fidelity (number of filter taps) and positioning (correct vs. incorrect) of reflections.
System latency and update rate can also be manipulated. The project is also an



Wenzel, E. M., et al., "Sound Lab…"

108th Convention of the Audio Engineering Society, Paris

3

attempt to provide the basis of a low-cost, software-based system for dynamic
synthesis of virtual audio over headphones that does not require an array of
special purpose signal processing hardware. Because it has been designed for
the Windows platform and relies on a standard signal-processing library, it can
more readily take advantage of improvements in processing power without
extensive software revisions.

The development of SLAB is currently a work-in-progress. This paper outlines
the overall goals and architecture of the system as well as describes progress to
date in implementation. It should be emphasized that not all aspects of the
system described in Section 2 have been fully implemented.

2. DESIGN CHARACTERISTICS OF SOUND LAB

The SLAB system was designed to allow control over the kinds of spatialization
parameters studied in psychoacoustic studies while providing a quick experiment
development cycle.  The system features a modular, object-oriented design that
provides the flexibility and extensibility needed to accommodate a wide range of
experiments. This design approach has the additional benefit of easing
maintenance requirements.

Because of its modularity, SLAB can support a wide variety of signal flow
structures without extensive software revisions. Currently, the "auralization unit"
(see below) has a fixed architecture, consisting of a set of parallel signal paths
from each source to the listener.  Parameters determining the processing (delay
line indices, filter coefficients, and the like) are computed based on the
experiment state (defined by quantities such as source and listener position), and
applied to the signal flow.  In this way, the signal flow may be optimized for
processing efficiency and latency, independent of the experiment.  Since only
certain aspects of the translation of experimental state to signal processing
parameters change from study to study, development time is minimized. In
contrast to an extremely flexible but computationally intensive system like the
Spatialisateur [12] that uses a graphical signal processing software environment,
SLAB's fixed signal flow architecture can be thought of as a compromise solution
that optimizes efficiency at the expense of complete flexibility. Such a
compromise is necessary given the design goal of providing a software solution
for a low-cost host platform (e.g., Intel Pentium).

2.1 SLAB System Architecture

As shown in Fig. 1, the SLAB system is composed of five conceptual software
layers: Application Programming Interface (API), 3D Projection, Signal Flow
Translation, Signal Routing and Processing, and Digital Signal Processing
Library. The acoustic scene, including listener, source, and environment
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characteristics, is specified in the API layer and translated in the 3D Projection
layer to geometric quantities, such as range and arrival angle for each path
rendered between the source and listener. Physical effects, such as the head-
related transfer function and air absorption, are rendered using a set of parallel
signal paths built on Intel's Signal Processing Library.

2.2 SLAB Signal Processing

Physical scenario. The target scenario to be rendered is shown in Fig. 2.  There
are three domains in the physical scenario: the source, the environment, and the
listener.  A source, characterized by its waveform, level, radiation pattern, size,
and dynamic quantities including position and orientation, radiates into an
environment. Propagation of acoustic energy in the environment is specified by
the speed of sound, spherical spreading loss, and air absorption; the
environment is further specified by the location and characteristics of reflecting
and transmitting objects. The source signal propagates through the environment,
arriving at a listener characterized by a head-related impulse response (HRIR)
and interaural time delay (ITD), as well as a dynamically changing position and
orientation.

Physical signal flow. A signal path may be modeled according to the scenario
of Fig. 2 using the signal flow architecture shown in Fig. 3. A set of P paths from
the source to the listener (including the direct path) is separately rendered.  The
filter r(z) imposes the source radiation pattern on the source signal to take the
signal from the source to a point in the vicinity of the source along a particular
radiation direction. The filter z-τα a(z) applies the propagation delay, spherical
spreading loss, and air absorption experienced as the source signal propagates
from near the source to near the listener; the filter m(z) imposes transmission or
reflection characteristics of any objects encountered. The filter z-τh h(z)
represents the head-related impulse response and interaural time delay, and
takes any arriving signal from the vicinity of the listener along a particular
direction to the listener's ear canals.

SLAB signal flow. The SLAB signal flow shown in Fig. 4 was designed to
implement the physical effects discussed above in an easily maintained, efficient
architecture. It consists of a set of parallel signal paths, one for each rendered
path from the source to a listener's ears. The propagation delay and interaural
time delay for each source-to-ear path are combined, and implemented via an
interpolated delay line. Static effects along each path, such as materials
reflection filtering are combined and implemented as an infinite impulse response
(IIR) filter. A finite impulse response (FIR) filter is used to implement dynamic
effects such as the head-related transfer function and the source radiation
pattern.
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Interpolated delay line. The interpolated delay line provides a fractionally indexed
delay representing propagation delay and interaural time delay. The fractional
delay line is implemented by linearly interpolating between adjacent samples of a
two-times, up-sampled source signal.

Linear interpolation is used for its computational simplicity; each fractional
sample evaluated requires only two multiply-accumulates. However, linear
interpolation of the input source signal samples as described in [8] results in a
low-pass filtering for delays near odd half integers. This effect is illustrated in Fig.
5, which plots the magnitude transfer function and phase delay for a linearly
interpolated delay. By contrast, as illustrated in Fig. 6, the linearly interpolated,
up-sampled delay exhibits noticeably less high-frequency attenuation. Since the
input signal needs to be up-sampled only once, the additional computational cost
is fixed and small compared with the cost of linearly interpolating indices for even
a small number of paths. The factor of two up-sampling was used because it
provided a sufficiently flat magnitude spectrum, was inexpensive to compute, and
fit within the memory budget.  A larger up-sampling filter would provide a flatter
magnitude spectrum, but would require additional memory and multiply-
accumulates.  Finally, it should be pointed out that while other fractional delay
methods are available, including all-pass interpolators, sinc interpolators, and the
like [11], they have a much higher per-tap computational cost.

IIR filter (static scenario properties). The SLAB signal flow uses an IIR filter in
each path to implement static filtering, such as that imposed by a materials
reflection.  The idea is that while IIR filters are often difficult to change over time
without audible artifacts [12], many effects are more efficiently implemented via
an IIR filter.  For instance, many materials are characterized by reflections that
are attenuated above a transition frequency, often below 1000 Hz. A low-order
IIR filter is sufficient to model such materials, but because the transition
frequency is such a small fraction of the sampling rate, the corresponding FIR
implementation would require a large number of taps to adequately represent the
required low-frequency detail.

Note that the SLAB signal flow architecture with its fixed IIR materials filter is
limited to specular reflections (angle of incidence equals angle of reflection) in
which the filtering is independent of the direction of arrival.  In this way, separate
image model paths are rendered, and the filtering resulting from interactions with
reflecting and transmitting features in the environment is fixed (as the cascade of
reflection and transmission filters) and independent of the path geometry.
Diffuse reflections are not modeled in the SLAB auralization unit.

FIR filter (dynamic scenario properties). The SLAB FIR filter implements
dynamically changing effects, including the source radiation pattern, air
absorption, spherical spreading loss, and head-related transfer function. The FIR
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filter coefficients for a given path are formed by convolving the impulse
responses of the effects rendered, and windowing the resulting impulse response
to the FIR filter length for that path.

Having a single FIR filter allows any number of effects to be rendered using the
same optimized signal processing structure.  However, care should be taken that
the cascade of effects does not result in an impulse response that is much longer
than the computational constraints allow. For instance, separate head-related
transfer function tables could be prepared for the direct path and the reflected
paths if the reflected path FIR filters were shorter than those of the direct path.
Alternatively as discussed in [8], raw HRTFs may be appropriately modeled or
smoothed, resulting in lower-order FIR filters that consume less computational
resources.

To compute the source directivity filter for a given path from the source to listener
ear, a table of impulse responses for the source radiation pattern is indexed
according to the radiation direction.  Source radiation-pattern impulse responses
are tabulated on a grid in azimuth and elevation relative to the source, having the
same number of azimuths for each elevation tabulated. A four-way linear
interpolation is used to form the radiation pattern impulse response, h (t; θ, φ), 
associated with a given radiation azimuth θ and elevation φ.

h (t; θ, φ) = αφ αθ  g(t; θ2,  φ2) + αφ  (1-αθ ) g(t; θ1,  φ2) +  
 (1-αφ ) αθ g(t; θ2,  φ1) +  (1-αφ ) (1-αθ )  g(t; θ1,  φ1). (1)

The g(t; θk, φ k )  represent tabulated impulse responses; θ1 and θ2 are the
tabulated azimuths immediately smaller and immediately larger than the input
azimuth θ; and φ1 and φ2 are the tabulated elevations immediately smaller and
immediately larger than the input elevation φ. The factors α are fractions
representing the distance between the indexed azimuth and elevation and the
interpolated azimuth and elevation:

αφ  = (φ −  φ1) / (φ2 −  φ1).

αθ  = (θ −  θ1) / (θ2 − θ1). (2)

Spherical spreading loss is computed as (1 + ρ2 / σ2)–1/2, where ρis the source
distance from the listener, and σ is the source size. This characteristic closely
approximates that of a planar baffled cylindrical piston of radius σ [13].

The head-related transfer function for a particular path's arrival angle is
computed via table look-up in a manner similar to that of the source radiation
pattern. Due to the greater complexity of HRTFs, however, the table
measurement grid has many more azimuth entries. The HRIRs typically used
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here are minimum-phase representations of the raw left and right-ear impulse
responses measured for individual subjects using a blocked-meatus technique
[modified Crystal River Engineering "Snapshot" system, e.g., see 10]. Interaural
time delays (ITDs) are estimated from the raw left and right-ear impulse
responses and represented as a separate table of location-dependent pure
delays.

The current database, as described in Section 3, contains an HRIR pair and ITD
measured every 30° in azimuth and every 18° in elevation. The measured
elevations extended from -36° to +54°. (There is, however, no limitation to the
density of the HRIR database; denser measurement grids will be used in the
future. A recent modification of the Snaphot system now allows HRIRs to be
measured for arbitrary densities.) Measured data are extended to the full sphere
via biharmonic spline interpolation [14] to form the head-related impulse
response table. To form the HRIR and ITD for an arbitrary sound source azimuth
and elevation, the four nearest database neighbors are linearly interpolated in
real time in a manner similar to equation (1). This results in a 128-tap FIR filter
that is applied to the output of the materials filters. 128-tap filters are currently the
maximum fidelity that can be reasonably achieved for the direct path with a single
Pentium II processor rendering a direct path and six 32-tap reflections (Section
3). Again, there is no inherent limitation on the number of coefficients in SLAB,
other than the processing power of the host.

Mixing and equalization.  Prior to headphone presentation, the outputs of the
direct path and early reflection signal processing paths are summed to form a
stereo output pair by a mixer having a 32-bit integer accumulator.

It should be noted that, currently the SLAB system uses head-related transfer
functions that have been equalized for Sennheisser 430 headphones prior to
storage in the HRIR database. It turns out that this headphone equalization (as
well as those of other Sennheisser and many Sony headphones) suppresses
energy at frequencies below a few kilohertz compared to the diffuse field.  Such
suppression has the beneficial effect of shortening the head-related impulse
response. As a result, the output equalization filter shown in Fig. 4 is currently a
pass-through component.

2.3. Dynamic Behavior

Interactive virtual audio systems are necessarily time varying.  As the scenario
changes over time, different signal processing parameters are required to render
the changing physical effects imposed on the source signal.  The difficulty is that
all signal processing structures available for implementing the changing scenario
are inherently static, assuming fixed coefficients. As a result, care must be taken
when updating signal processing parameters. Ideally, new parameters are
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switched in sufficiently frequently that the change from one parameter set to the
next is imperceptibly small. Certain parameters such as time delays need to be
updated every sample to avoid artifacts; minimum-phase head-related transfer
functions are somewhat more forgiving.

The main problem with this approach is that it is expensive to compute signal
processing parameters from scenario information. There is also the additional
issue that peripherals such as head trackers typically provide updates at rates in
the range 30 Hz to 120 Hz, so that intermediate scenario data must be
developed.

Two methods are used to accommodate a changing scenario: output
crossfading, and parameter crossfading (described as commutation in Jot,
Larcher and Warusfel [12]).  In output crossfading (e.g., as in early versions of
the Convolvotron that used non-minimum phase HRTFs [15]), the output is a
blend of the input processed according to past parameters and according to
present parameters. While the two processing paths use static coefficients, the
blend is varied over time to achieve a transition between the parameter sets.
Parameter crossfading, by contrast, processes the input according to a varying
set of rendering parameters.

Overlap-add methods that operate in the frequency domain are, in effect, a type
of output crossfade where the crossfade interval corresponds to the overlap-add
interval.  Undesirable artifacts when updating the scenario are mitigated by the
use of frequent updates and densely measured HRTF databases and/or densely
pre-computed binaural room impulse responses [16, 17]. Disadvantages of this
method include large memory requirements and the fact that changes in the
source, room and receiver characteristics require new measurements or
simulations.  Other systems utilizing convolution in the time-domain also appear
to have used densely-interpolated HRTF databases (e.g., spatial resolution on
the order of 2° after interpolation), perhaps combined with a short period of
output crossfade, to mitigate possible artifacts due to switching between filters [1,
18].

As developed below, the output crossfade has the drawback of being
computationally burdensome.  In addition, the output is a mixture of two different
systems and might not resemble that of a single system intermediate between
the two. Accordingly, the SLAB system uses a variation of parameter crossfading
that we term "parameter tracking." Since new scenario information may be
available relatively infrequently and contains measurement noise, signal
processing parameters computed with each new scenario update become target
parameters that are tracked or smoothed. Currently in the SLAB system, the
scenario is actually updated frequently compared to other systems (i.e., at an
average interval of about 8 ms given a 120 Hz scenario update rate). In
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parameter crossfading, there may be multiple update rates for various signal
processing parameters. In SLAB, there are two parameter update rates. Every
other input frame or 1.45 ms (64 samples), filter coefficients are replaced with
ones slightly closer to the target coefficients, while path delays are updated every
sample (22.7 µs) to preserve embedded Doppler shifts.

Output crossfade.  The signal flow architecture for output crossfading is
illustrated in Fig. 7. Periodically, scenario information, ζ, such as source and
listener positions are updated and translated to signal processing parameters, η,
such as time delays and filter coefficients. The source signal is filtered in two
parallel processes, one according to the current parameters ηn and the other
according to the past parameters ηn-1. The past and current processing outputs
are weighted and combined to form the system output:

hλ (z) = λ h (z; η n) + (1-λ) h(z; η n-1). (3)

To smoothly transition from one set of parameters to the next, the crossfade
parameter λ is changed from zero to one.

An example of an output crossfade parameter trajectory is shown in Fig. 8.
There is a period of time during which only the current parameter processing
appears at the output, followed by a transition region during which the system
crossfades to the new parameters.

There are two main drawbacks to the output crossfade approach.  One is that
twice the computation of a stationary system is required during any transition
between scenario states. This motivates using a short transition region; however,
transition regions shorter than a few milliseconds can create audible artifacts
such as clicks and zippering.

The other drawback is that the crossfaded system response does not correspond
to that of crossfaded scenario parameters.  As illustrated in Fig. 9, the crossfaded
response between a system and its delayed version is a pair of impulse
responses, rather than an impulse response appearing at a time between the
two.

Parameter crossfade.  The parameter crossfade signal flow architecture is
shown in Fig. 10.  Periodically, scenario information is updated, and translated to
signal processing parameters η. As illustrated in Fig. 11, a crossfade function is
used to generate a sequence of signal processing parameters intermediate
between past and current parameters, ηn-1 and ηn, and the input signal filtered
accordingly,
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hλ (z) = h (z; ληn + (1-λ) ηn-1). (4)

Note that the parameter trajectory of Fig. 11 is piecewise linear.  If desired, say
for accurate Doppler shift rendering, other trajectories that interpolate or smooth
the sequence of signal processing parameter values (e.g., see parameter
tracking below) may be used.

Provided that the increments between successive intermediate parameter sets
are sufficiently small, a smooth transition will result.  In the case of updating the
FIR filter coefficients of HRTFs, switching in new coefficients every couple of
milliseconds appears to be sufficient.  However, to avoid audible artifacts, and to
maintain the Doppler cues embedded in changing time delays, it is necessary to
update any propagation delays and interaural time delays every sample.

By comparison to the output crossfade approach above, the parameter crossfade
is computationally less expensive and, as illustrated in Fig. 9, can provide
intermediate responses more closely matching those of intermediate values of
the scenario parameters.  Note, however, that this might not be the case for
certain signal processing parameters such as IIR filter coefficients, where
crossfaded values between the coefficients of stable filters can result in unstable
filters. Under these circumstances, it is best to compute signal processing
parameters from crossfaded scenario parameters.  Typically, this is not done,
since computing signal processing parameters from scenario information is
computationally costly.

Parameter tracking.  Scenario information such as source position or subject
orientation often contains measurement noise. Such information may be
processed, trading increased smoothness (i.e., noise reduction) for longer
latency, before use in rendering. Alternatively, the scenario information may be
translated to a sequence of signal processing parameters, ηn, and smoothed or
tracked, as shown in Fig. 12.  Again, smoothness is being traded for latency, but
in this case at the signal processing parameter level.

The notion of estimating parameter trajectories via tracking is a classic problem
from control theory.  The goal is to find the parameter trajectory that best fits the
measurements, given some knowledge about the noise corrupting the
measurements and the parameter dynamics.  For instance, in SLAB we assume
that the head-tracking measurements are corrupted by a modest amount of
additive noise and that the signal processing parameters that correspond to
changes in the listener's head position remain relatively constant over a short
period of time (e.g., less than 50 ms). This assumption is supported by the
observation that during localization, listeners' head motions do not exceed
velocities of about 180°/s [4]. As a result, the SLAB parameter tracker
approximates a running average of signal processing parameters (over a 15-ms
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time period) computed from measured head orientation and other measured
scenario parameters. In this way, the additive measurement noise in the
computed signal processing parameters is reduced while maintaining the
parameter dynamics.

Probably the simplest tracker is the so-called leaky integrator,

η t = (1-α) η T(t) + αη t-1 , (5)

which computes the next signal processing parameters η t as a fraction, (1-α), of
the target parameters η T, and a fraction α of the previous parameters η t-1. Note
that the leaky integrator is similar in form to an integrator, η t = η T(t) + η t-1, which
simply sums the input target parameters η T(t).  The leaky integrator, however,
gives less weight to past parameter values, so that its output is an average of
only recent target parameters– “recent” meaning several samples when the
fraction α is close to zero, and many samples when α is close to one. For
example, when the tracking parameter α is close to one, the target parameters
have relatively little influence on the current parameters, and the parameters
converge slowly to their target.  Such a tracking parameter is appropriate in the
presence of moderate, zero-mean additive measurement noise, i.e., head-tracker
noise, which is suppressed by averaging.

The leaky integrator output decays to the target parameters by a portion (1-α) per
update.  Setting the fraction α according to

α = exp { -1 / n } (6)

results in a decay time of n updates.  Accordingly, with scenario information
updated at a rate, fU, and new signal processing parameters computed at a
parameter update rate, fF, the tracking parameter

α = exp { -fU / fF } (7)

gives an approximation to the piecewise linear approach described above (see
Fig. 11).

The SLAB system uses leaky integrators to track changes in target signal
processing parameters computed from scenario updates that are received
roughly every eight milliseconds (fU = 120 Hz). Leaky integrators tracking
changing time delays are updated every sample (22.7 µs; fF = 44.1 kHz), so that
Doppler cues are maintained. To minimize computational cost, the leaky
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integrators tracking the FIR filter coefficients are updated less frequently, every
other input frame or 1.45 ms (64 samples; fF = 690 Hz),

3. THE CURRENT SLAB SYSTEM IMPLEMENTATION

As mentioned in the introduction, the SLAB system is a work-in-progress.  While
the signal flow architecture illustrated in Fig. 4 has not yet been fully
implemented, significant progress has been made in developing the modular
software architecture to support its full implementation. The sections below
discuss the components of the signal processing architecture that have been
implemented so far and provide preliminary data regarding the performance of
the system as well as verification of the basic signal processing algorithm.

3. 1 Preliminary System Measurements

To date, the components of the signal processing architecture that have been
implemented include the interpolated delay line and the spherical spreading loss
and HRTF components of the FIR filter.  As described in a previous presentation
[19], these components have been utilized in an initial simulation scenario based
on the image model with a direct path and six first-order reflections. Scenario
specifications and current performance characteristics achievable with a single
450 MHz Pentium II processor are summarized in Table 1.

One of the major implementation hurdles overcome in developing such a system
has been to achieve adequate dynamic performance in Windows, an
environment that is not ideally suited to real-time performance. A measurement
of the internal latency of SLAB for the simulation described above provides a
preliminary assessment of its dynamic performance. The internal latency is the
delay between acquisition of location data by the host rendering system and the
rendered audio output. Total system latency, or end-to-end latency, on the other
hand, refers to the time elapsed from the transduction of an event or action, such
as movement of the head, until the consequences of that action cause the
equivalent change in the virtual sound source location. Latencies are contributed
by individual components of a virtual audio system, including tracking devices,
signal processors, software to control these devices, and communications lines
[2-4].

Here, internal latency was measured in the following manner. An I/O port of the
SLAB host renderer and the SLAB headphone output were connected to the
begin- and end-time inputs of an interval timer, respectively. The I/O port was
used to indicate when new scenario information was received by the SLAB host
rendering system.  With this configuration, the internal latency measurement was
24 ms. A preliminary value of 24 ms is quite encouraging considering the
inherent difficulties in managing low-latency Windows audio output, let alone
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while performing a high cost simulation that consumes a significant portion of
available system resources. The total system latency would necessarily be
somewhat longer than 24 ms since it would include additional head-tracker,
communication line, and client/server latencies.  Implementation of the full signal
path of Fig. 4 will no doubt also add to the latency of the system, although it is
unclear how significant this increase might be, particularly since the signal
processing algorithms have yet to be fully optimized.

3.2 Verification of Signal Processing Algorithms

In this section, the current SLAB signal processing verification procedure is
discussed.  The SLAB auralization unit is being developed in two environments.
Modeling of the signal processing algorithms is being conducted in MATLAB (v.
5.2, The Mathworks) and Microsoft Visual C++ is used for real-time
implementation. The anechoic impulse responses of both implementations were
compared to verify equivalent behavior. To generate the C++ responses, a utility
was written that outputs impulse responses for a range of source and listener
positions. These responses were read into a MATLAB utility which graphically
compares C++ responses, MATLAB responses, and HRTF database responses
(when available). The verification graphs for a succession of source locations is
shown in Fig. 13. The source was placed 10 cm from the listener at -30, -40, -50,
and -60 degrees azimuth. The listener was placed at the origin.  When an un-
interpolated HRTF measurement was available (-60 and -30), it was also
displayed. In this instance, the only processing performed was spherical
spreading loss in order to align the magnitude response curves.

As can be seen from the verification graphs, the C++ implementation is
consistent with both the MATLAB model and the HRTF database. The minor
deviations that exist seem reasonable considering the lower precision of the C++
implementation. The C++ implementation uses 16-bit integer, floating point, and
double-precision floating point as data types; the MATLAB model uses only
double-precision floating point. Another source of deviation could be
implementation differences in the C++, SPL (Intel Signal Processing Library), and
MATLAB math libraries. C++ and SPL libraries emphasize performance;
MATLAB libraries emphasize computational accuracy. But, as illustrated by the
verification results, the C++ and SPL real-time implementation yielded minimal
computational artifacts.

This verification procedure highlights the importance of HRTF database density.
The current database format contains HRIRs measured at every 30° of azimuth.
Thus, the graphs in Figures 13a and 13d correspond to measured database
locations. The graphs in Figures 13b and 13c, on the other hand, correspond to
linearly interpolated HRIRs. The magnitude notch seen in Fig. 13a at 1000 Hz
does not gracefully migrate to the 880 Hz notch seen in Fig. 13d. It, instead,
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disappears in Fig. 13b and reappears in Fig. 13c. This type of linear interpolation
artifact will be ameliorated through the use of denser HRTF databases that are
now being measured.

4. CONCLUSIONS

The goal of the system described here, Sound Lab (SLAB), is to provide an
experimental platform with low-level control of a variety of signal-processing
parameters for conducting psychoacoustic studies. For example, some of the
parameters that will be examined in future experiments include the number,
fidelity (number of filter taps) and positioning (correct vs. incorrect) of reflections.
System latency and update rate can also be manipulated. The project is also an
attempt to provide the basis of a low-cost, software-based system for dynamic
synthesis of virtual audio over headphones that does not require an array of
special purpose signal processing hardware.

The development of SLAB is currently a work-in-progress. To date, the
components of the signal processing architecture that have been implemented
include the interpolated delay line and the spherical spreading loss and HRTF
components of the FIR filter. These components have been utilized in an
interactive simulation scenario based on the image model with a direct path and
six first-order reflections and implemented on a single 450 MHz Pentium II.

One of the major implementation hurdles overcome in developing such a system
has been to achieve adequate dynamic performance in Windows, an
environment not ideally suited to real-time processing. Measurement of the
internal latency of the system provides a preliminary assessment of the dynamic
performance of SLAB. This preliminary value of 24 ms is quite encouraging
considering the inherent difficulties in managing low-latency Windows audio
output, let alone while performing a high cost simulation that consumes a
significant portion of available system resources. Implementation of the full signal
path (Fig. 4) will add to the latency of the system, although it is unclear how
significant this increase might be, particularly since the signal processing
algorithms have yet to be fully optimized.

Informal listening tests indicate that the dynamic behavior of the system is both
smooth and responsive.  The smoothness is enhanced by the 120-Hz scenario
update rate, as well as the parameter tracking method which produces rather
high parameter update rates; i.e., time delays are updated at 44.1 kHz and the
FIR filter coefficients are updated at 690 Hz. The responsiveness of the system is
enhanced by the low latency of 24 ms. The scenario update rate, parameter
update rates, and latency all compare favorably to other virtual audio systems
[e.g., 1, 8, 16, 18].  While the current scenario implemented in SLAB is
incomplete, we don't expect implementation of the full signal path to significantly
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increase latency or decrease filter coefficient update rates. At this point, it is
difficult to estimate the impact of simulating higher-order reflections or late
reverberation on SLAB system performance.

In addition to implementing the full signal path and optimizing the signal
processing algorithms, future development will include exploration of several
systems and performance issues.  A client-server architecture has recently been
implemented so that SLAB is isolated from other system components, such as
the head tracker and the experimental control software.  In order to facilitate
simulation of more complex room models in real time, SLAB could be
implemented as a distributed system to further spread out the computational load
over multiple workstations.  Multiple processor support is also being researched
as a method for increasing computational resources.
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5 Conceptual Software Layers

SRAPI:  SLAB Renderer API
Describes listener, source, and environment

3DP:  3D Projection
Converts SRAPI parameters to geometric quantities 

(sound arrival angle, etc.)

SFT:  Signal Flow Translation
Converts geometric quantities to FIR and IIR coefficients

and delay line indices for each path and each ear

SRP:  Signal Routing and Processing
Routes signal from source to destination

Performs signal processing and parameter updating
Manages interpolated delay line

DSPL:  DSP Library
Provides signal processing routines

Fig. 1. Conceptual illustration of the five functional layers comprising the software
architecture of the Sound Lab system.

SOURCE
• signal waveform
• radiation pattern
• position, orientation,
  velocity
• level
• size

LISTENER
• head-related transfer function
• interaural time delay
• position, orientation, velocity

ENVIRONMENT
• propagation medium
   - sound speed, spherical
     spreading loss, air absorption
• reflection characteristics
   - surface position, orientation,
     reflection / transmission filter
• reverberation characteristics
   - RT60, equalization

Fig. 2. Illustration of the physical scenario simulated in the Sound Lab system.
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interaural time delay
left, right HRTF

SOURCE RADIATION ENVIRONMENT PROPAGATION HEAD EFFECT

1 P P P 2P
+

2
z      a(z)
−

z       h(z)
− h 

mix

Physical Signal Flow

P = Number of Paths (Direct Path & Reflections)

binaural 
signal

Fig. 3.  The physical signal flow is shown as a block diagram that partitions the
properties of the physical scenario into the relevant signal processing components.

headphone
output

2P

FIR filter, (s), r, 
radiation pattern 

air absorption
spherical spreading

HRTF

2P
h(z) a(z) r(z)m(z)

IIR filter, m
reflection

transmission

interpolated 
delay line, r, 

propagation delay
 ITD

IIR filter
output device
equalization

2
e(z)

22P
+

mixsource

1  a ± h z

P = Number of Paths (Direct Path & Reflections) 

SLAB Signal Flow 

Fig. 4. The SLAB signal flow, or "auralization unit," is shown as a block diagram that
partitions the properties of the physical scenario into the relevant signal processing
components as they are implemented in the SLAB system architecture.



Wenzel, E. M., et al., "Sound Lab…"

108th Convention of the Audio Engineering Society, Paris

20

fractional delay filter magnitude responses,
order 2, oversampling ratio 1.
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Fig. 5. The magnitude transfer function and phase delay is plotted for a linearly
interpolated delay without up-sampling of the source signal. The parameter δ is the
value of the delay expressed as fractions of a 44.1 kHz sample.
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Fig. 6. The magnitude transfer function and phase delay are plotted for a linearly
interpolated delay using a two-times up-sampled source signal. The parameter δ is the
value of the delay expressed as fractions of a 44.1 kHz sample.
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source signal

h(z; η1)

h(z; η2)

η2

scenario
parameters

λ

1−λ

output

crossfade 
parameter

λ

signal processing
parameters

η(ζ)ζ2

η(ζ)ζ1
η1

Fig. 7. Illustration of the signal flow architecture for output crossfading.

λ

1−λ
t

τc

λ

Fig. 8.  Illustration of the parameter trajectory for output crossfading. The crossfade
interval is length τc.
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t

t

t

t

h(z; η1)

h(z; η2)

λh(z; η1) + (1-λ)h(z; η2) 

h(z; λη1 + (1-λ)η2) 

Fig. 9. Illustration of the system response resulting from output crossfading and
parameter crossfading.  The top panels represent the two signals to be crossfaded. The
third panel shows the result of crossfading the output, which produces in two reduced-
amplitude signals occurring at incorrect times. The last panel shows the output
response for parameter crossfading, a single full-amplitude signal occurring at the
correct intermediate time.

η1
η(ζ)

scenario
parameters

source signal

h(z; η)

output

signal processing
parameters

λ

1−λ

crossfade 
parameter

λ

η2

ζ1

ζ2 η(ζ)
η

Fig. 10. Illustration of the signal flow architecture for parameter crossfading.
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t
τf

η1

η2

η3

Fig. 11. Illustration of the parameter trajectory for parameter crossfading. Signal
processing parameters η are linearly faded between successive values. The signal
parameters implemented form a staircase having step width equal to the processing
frame duration of τf.

t

ηΤ

α small

α large

η

Fig. 12. Illustration of the parameter trajectory for the method of parameter tracking.
Target parameters ηT are tracked using a leaky integrator in which each new parameter
set is a constant proportion closer to the target set than was the previous set. When the
tracking constant is close to one (α large), the parameters move slowly toward the
targets. When the tracking constant is close to zero (α small), the tracked parameters
move quickly toward their targets.
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Simulation Scenario Specifications
Rectangular room; Image model

Number of first-order reflections:  6
Number of direct path FIR taps:  128

Number of reflection FIR taps:  32

System Dynamics
Sample Rate:  44.1 kHz

Internal system latency:   24 ms
Scenario update rate:   120 Hz

Delay line update:   every sample (22.7 µs)

DSP coefficient update:  every 64 samples (1.45 ms)

Table 1. Simulation scenario and performance characteristics for an initial
implementation using the SLAB system.
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SLAB Verification: Source Az = -30, El = 0

(a)

SLAB Verification: Source Az = -40, El = 0

(b)

Fig. 13. Comparison of C++/SPL, MATLAB, and HRTF left-ear magnitude responses
(anechoic).  (a) - (d) illustrate that the C++/SPL implementation, the MATLAB model,
and physical measurement all behave consistently across a range of source azimuth
locations.

Top:  C++/SPL
Bottom:  MATLAB
Dotted:  HRTF

Top:  C++/SPL
Bottom:  MATLAB
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SLAB Verification: Source Az = -50, El = 0

(c)

SLAB Verification: Source Az = -60, El = 0

(d)

Fig. 13 continued. Comparison of C++/SPL, MATLAB, and HRTF left-ear magnitude
responses (anechoic).

Top:  C++/SPL
Bottom:  MATLAB
Dotted:  HRTF

Top:  C++/SPL
Bottom:  MATLAB


