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Abstract

Many image discrimination models are available for static images. However, in many applications temporal information is important, so
image fidelity metrics for image sequences are needed as well. Ahumada et al. (1998) [Ref. 1] presented a discrimination model for image
sequences. It is unusual in that it does not decompose the images into multiple frequency and orientation channels. This helps make it
computationally inexpensive.  It  was evaluated for predicting psychophysical  experiments measuring contrast sensitivity and temporal
masking.  The  results  were  promising.  In  this  paper  we  investigate  the  performance  of  the  above-mentioned  model  for  a  practical
application – surveillance with infrared (IR) imagery.

Model evaluation is based on two-alternative forced choice experiments, using a staircase procedure to control signal amplitude. The
observer is presented with two one-second-duration IR-image sequences, one of which has an added target signal. The observer's task is
to guess which sequence contained the target. While the target is stationary in the image centre, the background moves in one direction,
simulating a tracking situation in which the observer has locked on to the target. The results shows that the model qualitatively, in four out
of five cases, have the desired behaviour.
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Introduction1. 

Many image display system tasks involve the detection or identification of  objects in the displayed imagery.  For instance a medical
diagnosis may depend on the identification of structures in X-ray images. A pilot aided with a camera in the nose of an aeroplane and a
display in the cockpit must not miss obstacles on the runway. In surveillance it is important to detect something which should not be
present or discriminate that something is missing. During system development, subjective testing for assessing user’s ability to perform the
detection task, is both expensive and time-consuming. An objective measure based on visual perception is therefore valuable, especially
during the early development stages.

Traditionally, infrared systems are evaluated for object detection by the Johnson criterion, giving detection probability of an object as a
function of parameters such as the target distance. (There are criteria for recognition, orientation and identification as well.) However, this
criterion does not take into account masking by the distribution of contrast in a neighbourhood of the object. Thresholds for object
detection are higher in a complex, high contrast background [Refs. 3, 4].

Studies show that image discrimination models can predict object detection in still medical images [Ref. 5], noisy military images [Ref. 6],
and in natural images [Ref. 7]. In this study we investigate the performance of a spatio-temporal image discrimination model in a practical
application – surveillance with infrared (IR) imagery. The model is unusual in that it does not decompose the images into multiple frequency
and  orientation  channels.  This  helps  make  it  computationally  inexpensive.  When  it  was  evaluated  for  predicting  psychophysical
experiments measuring contrast sensitivity and temporal masking, the results were promising [Ref. 1]. Here we evaluate the model’s ability
to predict the ability of observers to detect stationary targets in moving backgrounds.

We  begin  by  presenting  the  main  features  of  the  model  (the  details  are  available  elsewhere [Refs.  1,  2]).  Next  we  describe  the
psychophysical experiment. The model predictions are then presented, discussed, and conclusions are drawn.

Model1. 

It is convenient to describe the model as simulating the physiological stages of the human visual system. These stages are optics of the
eye, retina, LGN and the cortex, see Figure 1. Actually, the model is a lumped parameter model, so that the low pass filtering attributed to
the optics of the eye, for example, is actually the combined effect of low pass filtering at all stages. The model is an image sequence
discrimination model. It takes as input two-luminance image sequences and outputs a single number, the predicted discriminability of the
two image sequences in just-noticeable-differences. After "optical" low pass filtering and a "retinal" temporal smoothing and contrast
conversion,  separate sustained ("parvo")  and transient  ("magno")  spatio-temporal  channels  then process each image sequence.  The
masking  rules  are  different  in  magno  and  parvo.  The  differences  between  the  processed  channel  outputs  for  each  sequence  are
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accumulated to generate an overall difference.

Figure 1: Schematic overview of the model

Psychophysical Experiment1. 

Observers1. 

Ten novice observers participated in the experiments. All had normal or corrected-to-normal visual acuity. Ages ranged
from 21 to 47, with the median age being 25.

Experimental setup2. 

The experimental display was a Sony Trinitron Multiscan 20sh, driven by a Matrox Millenium graphics card. The resolution
was set to 1024 pixels horizontally and 768 pixels vertically, with a screen refresh rate of 60 Hz. The luminance profile of
the central parts of the display was measured and a gamma function estimated. The estimated gamma function was:

L(x, y) = 6.1+0.037 g(x, y)^1.97 , (1)

where g(x, y) is the grey value at location x, y and L(x, y) is the luminance value in cd/m2.

The background was held at a luminance of 27 cd/m2. The image sequences were displayed in the centre part of the
display in an area subtending 2 degrees of visual angle, with a resolution of 63 pixels per degree, shown at a frame rate of
30 Hz. The viewing distance was 140 cm, controlled with a head-and-chin-rest.

Experimental Procedure3. 

A 2-alternative-forced-choice procedure was used to determine the target visibility threshold in infrared sequences, using
a staircase procedure to control the target amplitude. On each trial the observer was presented with two one second
duration IR-image sequences, one with the target added. The observer's task was to guess which sequence contained the
target. The target was stationary in the image centre, and the background moved in one direction, simulating a tracking
situation in which the observer had locked on to the target. The size of the target was 19 arc min horizontally and 5 arc
min. vertically.

Before, between, and after the sequences are shown the observer viewed a grey screen (27 cd/m2) containing a faint
fixation mark in the centre. The observer commanded the start of each trial. Between each sequence was a 1 sec pause,
and between trials a pause of at least 1.5 sec. The observer entered the guess by pressing 1 (first sequence) or 2 (second
sequence) on the keyboard. A beep indicated a wrong guess. After 3 correct answers the contrast was decreased, and 1
incorrect answer raised the contrast. A contrast gain factor was multiplied with the grey values of target. The gain factor
was changed with large steps (10/255) in the first three steps and then with small steps (1/255). The initial gain factors
were selected individually for each sequence to obtain more steps close to the threshold. Thresholds were determined by
a maximum likelihood probit analysis [Ref. 9] that estimated the gain level leading to 75% correct. The analysis assumed
the psychometric  function was a cumulative normal  distribution.  Three 100 trial  staircases were run on each of  five
masking sequences.
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Stimuli4. 

Five IR sequences were obtained with an IR camera of high image quality. They were processed with software simulating
an IR system of much lower quality [Ref. 8], see Figures 2, 3 and 4. The target was an elongated object that when added to
the backgrounds brightened them, indicating a warmer area. The target image was also processed with the IR system
simulation software so as to contain noise similar to that of the backgrounds.

Figure 2: Sequence 1 and 2, displaying four images out of 30, with the target added.
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Figure 3: Sequence 3 and 4, displaying four images out of 30, with the target added.

Figure 4: Sequence 5, displaying four images out of 30, with the target added.

Experimental Results5. 

The experimental thresholds are reported in decibels of contrast energy (dBB), which is defined as
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dBB = 10 log10 E_c + 60 . (2)

The zero level of this unit is related to the highest sensitivity for a pattern measured by Watson et al. [Ref. 10]. The contrast energy is
determined by

, (3)

where A is the area of single pixel in deg2, t is duration the target is visible, c(x, y) is the contrast at location x, y and x, yÎ T means x, y
should belong to the target signal. The contrast is defined as

c(x, y) = L_T(x, y) / L_B - 1 . (4)

L_T is the luminance of the target and L_B is the mean luminance of the background.

The experiments were conducted in three sessions. The first session had a clearly higher average threshold than the other two, indicating a
learning effect, see Figure 5.

The individual observer thresholds were estimated from the combined data of sessions 2 and 3, see Figure 6. From these thresholds an
average value and a 95% confidence interval were calculated for each sequence, see Figure 7.

Figure 5: The estimated thresholds for the different sessions
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Figure 6: The thresholds of each observer

Figure 7: Average thresholds for the observers and 95% confidence intervals.

Model Predictions1. 

To evaluate the spatio-temporal model, predicted threshold values were computed for each sequence. The model output is given
in just-noticeable-differences d’. For comparison with the experimental data, we need to find the contrast energy E_c,  which
makes the model respond with d’ = 1.

The model parameters used are the same as in Ahumada et al. [Ref. 8], except for a sensitivity parameter which sets the overall
response level

d’ = a M(s_back, s_signal, E_c) , (5)

where a is the sensitivity parameter, M is the model, s_back is a background sequence, s_signal is the target signal and E_c is the
contrast energy that the signal is added with. The best estimate of the gain parameter in the least square’s sense is

mean(log(a m) – log d’_true ) = 0 , (6)
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where m is a vector with model responses. Since d’_true = 1, we have

log a = - mean(log m) . (7)

To minimize the effect of outliers, we used the median instead, giving an estimate for a of 8.4x10^7.

To find the thresholds in contrast energy, we should find the value E_c that makes d’ = 1. This is equivalent to log d’ = 0. The
values for each sequence have been numerically computed to:

Sequence
1 2 3 4 5

Threshold 19.8 17.2 20.7 24.5 20.7

For comparison, we have computed the peak-signal-to-noise-ratio (PSNR), for each sequence, which is defined in dB as

PSNR = 10 log10((max(s_back) – min(s_back))^2 / mean((s_back+signal – s_back)^2) . (8)

The rule of thumb is that if the response is about 32 dB the difference is on the threshold. However, if we add the target to the
backgrounds with the contrast energies of the thresholds of the average observer, we get values far from 32. Since there is a free
parameter  in  spatio-temporal  model  to  adjust  the  overall  level,  a  direct  comparison is  not  fair.  Therefore,  the  same type of
parameter has been added to the PSNR measure.

PSNR_a = 20 log10 a + PSNR = A + PSNR , (9)

where A = 20 log10 a. We can now adjust the level in a similar way as above, which gives

PSNR_a = 32 – mean(psnr) + PSNR , (10)

where psnr is a vector of the PSNR values for all sequences.

The results for the average of the observers, the spatio-temporal model, and PSNR_a, is plotted in Figure 8.

Figure 8: Thresholds estimated with the spatio-temporal model and PSNR, plotted together with the threshold of the average
observer.

Discussion and Conclusions2. 

An evaluation has been performed of a spatio-temporal model in a practical application – surveillance in IR imagery. We have
investigated the model’s ability to predict the ability of observers to detect stationary targets in moving backgrounds.

The results indicate that the model, at least qualitatively, in four out of five sequences have the desired behaviour. The result of
sequence 2 is poor. The dominating masking effect in this sequence is dynamic noise. The calibration of the model [Refs. 1, 2]
were performed with data covering mainly the low temporal frequency range. The movement of the background is of low temporal
frequency. The noise, on the other hand, contains mainly high temporal frequencies. The background movement makes the parvo
channel dominate the response of the model. The dynamic noise does not activate the masking in the parvo channel and the
model will, therefore, underestimate the threshold.

PSNR does not take masking into account, but the dynamic range of the background, which makes it adjust the threshold slightly
for different backgrounds. When the masking effects are strong, as in sequence 4, this is not enough. However, the sample set is
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too small to say which of the measures is the better. In Eckstein et al. (1997) [Ref. 5] a simple measure of contrast energy adjusted
to the background with the mean luminance, did perform comparably and even better than many of the vision models in the
investigation. Compared to the Johnson criteria, which does not take the background into consideration, both PSNR and the
spatio-temporal model are better.
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