
In Proceedings of the 2012 Symposium on Eye Tracking Research and Applications (ETRA), ACM, New York, pp. 265-268.

A GPU-Accelerated Software Eye Tracking System

Jeffrey B. Mulligan∗

NASA Ames Research Center

Abstract

Current microcomputers are powerful enough to implement a real-
time eye tracking system, but the computational throughput still
limits the types of algorithms that can be implemented in real time.
Many of the image processing algorithms that are typically used in
eye tracking applications can be significantly accelerated when the
processing is delegated to a graphics processing unit (GPU). This
paper describes a real-time gaze tracking system developed using
the CUDA programming environment distributed by nVidia. The
current implementation of the system is capable of processing a 640
by 480 image in less than 4 milliseconds, and achieves an average
accuracy close to 0.5 degrees of visual angle.

Keywords: image processing, GPU, CUDA, eye tracking

1 Introduction

In the last decade or so, increases microcomputer power have trans-
formed video-based eye trackers from specialized hardware devices
to software systems running on generic PC platforms. Nevertheless,
real-time system accuracy is still less than what can be obtained
when more sophisticated processing is applied off-line to recorded
sequences of eye images. Dedicated hardware solutions have been
demonstrated [Amir et al. 2005] that provide big speedups and are
desirable for commodity embedded applications, but the complex-
ity of FPGA programming and circuit design put this approach be-
yond the reach of most eye movement researchers and small lab-
oratories. Here we consider software-based approaches based on
commodity computer hardware, with the ultimate goal of matching
or beating the performance of current commercial offerings that ad-
vertise accuracies of a fraction of a degree at frame rates from 250
to 1250 Hz.

The computational power of personal computers has been greatly
increased by the introduction of powerful graphics cards contain-
ing a specialized graphics processing unit (GPU), with hundreds of
processors that all execute in parallel. The architecture is known
as Single Instruction / Multiple Data, or SIMD; all processors exe-
cute the same instruction simultaneously, each on a different part
of the dataset. Because many of the operations required to im-
plement a basic eye tracker are inherently parallel, the GPU archi-
tecture seemed like a promising avenue for an improved real-time
gaze tracking system. In this paper, we describe the results of our
attempts to adapt a basic software eye tracker to the GPU environ-
ment.

GPU programming has been greatly facilitated by the introduction
of high-level language support; there are two options in widespread
use: OpenCL and CUDA. Obtaining the best performance from an
nVidia GPU appears to be easier using CUDA than with OpenCL

∗e-mail: jeffrey.b.mulligan@nasa.gov

50

20

10

5

2

1

0.5

0.2

0.1

0.05

ti
m

e
 (

m
s
e
c
)

16 64 256 1024 4096

image size (pixels)

CPU

GPU

Figure 1: Execution times for floating-point addition of square im-
ages on the GPU (green triangles) and host CPU (red squares).

[Fang et al. 2011]. In this paper, we describe an implementation us-
ing CUDA, which consists of two parts: a set of kernels comprised
of instructions which run on the GPU’s SIMD architecture, and host
subroutines which call the kernels and perform other housekeeping
functions. When invoking a kernel, the programmer requests that
it be executed by a given number of threads; when this number is
greater than the number of processors, the CUDA runtime library
handles scheduling, so the programmer does not need to be con-
cerned with the details of the underlying hardware. The compu-
tation performed by each thread must be independent of all other
threads, so that the order in which threads execute does not affect
the result. For image processing, it is typical to have one thread per
pixel. Algorithms in which each pixel is processed independently
can be implemented very efficiently, making good utilization of the
GPU’s resources. The architecture is less well-suited to algorithms
in which the operation performed on a pixel depends on the results
of operations on neighboring pixels, such as flood-fill, and the ”star-
burst” algorithm used for eye tracking [Li et al. 2005].

The individual processors on the GPU are not particularly fast, but
high performance is achieved though massive parallelism. Figure
1 shows a plot of CPU and GPU execution times for floating point
addition of square images of various sizes. The results for the GPU
are roughly independent of image size up to about a quarter of a
megapixel. In this example, the asymptotic speed advantage of the
GPU is about a factor of 14.

In order to achieve this performance, the GPU must necessarily be
able to move data to and from its memory efficiently. Figure 2
shows the time required to move 1.2 megabytes of data (a 640x480
image of single-precision floating point numbers), using instruc-
tions of different data widths. The native word size of the GPU is 32

2

1

0.5

0.2

0.1

0.05

0.02

ti
m

e
 (

m
s
e
c
)

1 2 4 8

data width (bytes)

1 CPU

2 CPUs

4 CPUs

8 CPUs

1 GPU

Figure 2: Relative speeds of GPU and host CPU for moving a 1.2
MB block of data.

bits, and consequently there is little difference in the time required
to move the data using 4-byte moves versus 8-byte moves. On the
CPU, on the other hand, the time drops in direct proportion to the
amount of data moved per instruction. Figure 2 also illustrates that
the time can be reduced when the CPU’s task is divided between
different processor cores on a multi-processor machine. The time
is for the most part inversely proportional to the number of proces-
sors, but this relation breaks down when 8 processors are moving
64 bit words simultaneously, indicating saturation of the memory
bus.

2 System Architecture

2.1 Hardware Platform

The host computer for our system is a dual processor workstation
(Marquis C732T, ASL Workstations), with two Intel Xeon pro-
cessors (”Gainestown” model E5520) running at 2.27 GHz, each
with 4 cores. The motherboard (Supermicro X8DA3) provides
3 PCI-Express slots. One of these is populated with a CUDA-
capable video card (nVidia GeForce GTX 285), while the sec-
ond holds a four-channel analog video frame grabber (Sensoray
model 811). Images are acquired by a SONY pan-tilt-zoom cam-
era (model EVI-D70), which is controlled over a serial line using
SONY’s VISCATMprotocol. Near-infrared illumination is provided
by a group of light-emitting diodes (LEDs) powered by a custom-
built LED controller, which receives commands over a second se-
rial line. The output of the video card is sent to a flat panel monitor
(Samsung model 204BW) with a native resolution of 1680 x 1050.

2.2 Software platform

The host computer runs the CentOS distribution of the Linux oper-
ating system (CentOS release 5.6), which is a freely-available ver-
sion of Red Hat Enterprise Linux. The frame grabber is supported
natively by the Video-For-Linux-2 (V4L2) driver. The nVidia driver
for the video card was installed as part of the CUDA installation.

The approach we adopted was to integrate GPU acceleration into
our existing in-house software environment, known as QuIP, which
stands for Quick Image Processing; the name is a pun on the
fact that simple operations can be implemented by short scripts,
or ”quips.” QuIP can be divided into two parts: a ”back end” that
consist of a set of subroutines which carry out a variety of useful
functions; and a ”front end” consisting of a text interpreter which
parses the QuIP scripting language used to sequence the operations
performed by the back end. QuIP also provides an interface to con-
trol V4L2 frame grabbers and VISCATMcompatible cameras. The
QuIP interpreter, and the scripts which implement the eye tracking
functions described in this paper, are publicly available under the
NASA Open Source Agreement (NOSA), and may be downloaded
from our web site http://scanpath.arc.nasa.gov/quip/.

QuIP has two distinct input modes; command mode was developed
with interactive use in mind: commands are selected from a menu
(which can be displayed on screen by typing a question mark), and
commands requiring arguments will prompt for them if they are not
provided. In command mode, there is one command for every ba-
sic operation. For a complicated image processing algorithm, this
can begin to resemble assembler code. To allow the user to write
more natural and compact code, an expression mode is also pro-
vided, which can be invoked from one of QuIP’s submenus. QuIP’s
expression language is similar to C, using the same set of operators,
but the variables are data objects, which can be images, matrices,
vectors, scalars, or tensors, with as many as 5 dimensions. When
an expression is written involving objects containing more than one
element, the operations are performed for each element.

Our goal in incorporating GPU acceleration into QuIP was to do so
as transparently as possible. One reason why this cannot be done
completely transparently is that the GPU operates in its own mem-
ory space, and, in general, does not ”see” the same memory space as
the host CPU program. Therefore, data objects that will be manip-
ulated by the GPU must be explicitly created in the GPU’s memory
space. Subroutines to transfer data between the GPU and the host
are provided by CUDA, and are bound to commands in QuIP. Once
an object has been created, it can be used for the most part without
regard to whether it resides on the device or the host, as all of the
core functions have implementations in both contexts.

Memory on nVidia GPUs is divided into a number of categories:
a) most of the on-board memory is ”global” memory, which can
be seen by each processing core; b) each core has a small amount
of on-chip memory in the form of registers and cache; c) in addi-
tion, the CUDA library provides a special allocator function for host
memory which can be accessed by the GPU. Host-mapped objects
provide a convenient way to pass data between the host CPU and
the GPU.

The frame buffer memory on the video card cannot be accessed
directly from either the host or the GPU. To display an image from
on-board memory, it is bound to an OpenGL texture and rendered
into an on-screen rectangle.

QuIP is linked with the Motif library of graphical user interface
(GUI) widgets; simple commands create widgets which execute a
fragment of script when they are activated. Our prototype eye track-
ing system has a number of control panels which are used to enable
and disable features, set thresholds, and so on. There are also sev-
eral windows which display images: one window can display the
live video, and smaller windows display the regions-of-interest cor-
responding the pupil and corneal reflex (CR). There is also a large
plotting window capable of live display of measurements and inter-
mediate results, and a full-screen stimulus window.

3 Algorithms

In this implementation, a set of standard algorithms have been used
to demonstrate the potential of the software environment, which
may provide a starting point for enhancement by ourselves or oth-
ers. A number of threshold values are initialized manually by the
user/experimenter. However, thresholds could be automatically de-
termined through analysis of the image histogram.

3.1 Image validation

The first step is to compute the mean value of the image. When
the subject is position, the variation in this value is relatively small
(and can be reduced further by disabling automatic gain control on
the camera). Blinks are readily apparent as transient positive blips.
If the image mean is between an upper and lower threshold, then
processing continues. A slider widget is used to manually adjust
the thresholds while observing the signal and the threshold bounds
in the plotting window.

3.2 Pupil finding

Candidate pupil pixels are found by applying a simple threshold. In
the QuIP expression language, this operation can be invoked suc-
cinctly using C language conditional operator:

pup_mask = input > pup_threshold ? 0 : 1 ;

In this case, pup_mask and input are full-size images, while
pup_threshold is a scalar value.

Further processing of the pupil is done on a 192 x 192 region-of-
interest (ROI) to reduce the amount of data that must be processed
and to exclude regions far from the pupil that may contain dark pix-
els below the pupil threshold. The pupil ROI is initially positioned
at the center of the frame.

The pupil area is computed by taking the sum of the pixels in the
mask. This is compared to an upper and lower threshold. if it falls
within those values then it is assumed that the pupil falls within
the current ROI. Otherwise, the ROI is scanned through the frame
until a position that meets the criterion is found. If none is found,
processing of this frame stops and the previous ROI location is re-
tained.

When a ROI with an acceptable pupil area is found, the centroid is
computed:

pup_area = sum(pup_roi);
tmp_img = pup_roi * pup_roi_x;
cx = sum(tmp_img)/ pup_area;
tmp_img = pup_roi * pup_roi_y;
cy = sum(tmp_img)/ pup_area;

The images pup_roi_x and pup_roi_y have the same size as the
pupil ROI, and are initialized so that each pixel contains the value
of its x (or y) coordinate relative to the image center.

If the pupil centroid is displaced from the ROI center by more than
a small value (currently set to 2 pixels), the ROI is moved by an
amount equal to the centroid position, and the centroid is recal-
culated relative to the new ROI. Under normal circumstances, re-
calculation of the centroid should be equivalent to subtracting the
displacement values from the original values, but the displaced ROI
may include new pupil pixels, or the full displacement may not be
possible if the image boundary is reached. Note that the pupil cen-
troid is calculated on the GPU but tested on the host, requiring syn-
chronization of the two execution streams.

3.3 Corneal reflex finding

The corneal reflex (CR), or ”glint,” is located in much the same
way as the pupil: candidate pixels are selected from the full image
with a threshold and a search is performed within the pupil ROI
for a smaller region containing an appropriate number of selected
pixels. A 64 x 64 ROI is used for the CR; it is repositioned to keep
the CR centroid near the center. The sizes chosen for the ROIs
represents a compromise between rejection of spurious pixels from
the centroid calculation (improved by a smaller ROI) and the ability
to maintain track in the presence of large inter-frame movements.
Using the sizes reported here, the system has no problem following
large saccades or rapid head movements.

3.4 Point-of-gaze estimation

Our current implementation estimates the point-of-gaze via a sim-
ple linear transformation of the pupil-CR vector, with coefficients
determined by regression on a calibration data set. (We expect
that better performance might be obtained using a model-based ap-
proach [Beymer and Flickner 2003; Model and Eizenman 2011],
although a recent report [Hennessey et al. 2008] claims superior re-
sults using the P-CR method.) Because point-of-gaze estimation
generally involves calculations with scalar values (rather than com-
putations on entire images), there is no particular advantage in us-
ing the GPU for this step, and modest increases in complexity are
unlikely to have a large impact on system throughput.

4 Performance

System time performance of the can be monitored in two ways: ex-
ecution times on the host can be assessed by reading the system
clock (using the operating system call gettimeofday), while ex-
ecution times on the GPU can be measured independently using
event timing functions provided by the CUDA library. QuIP pro-
vides a simple set of commands to insert both types of checkpoints
within scripts.

Figure 3 shows the execution profile for a single frame of video.
The data from the frame grabber is provided by the driver in buffers
residing in general-purpose host memory, encoded as YUV 422 (lu-
minance samples at full resolution alternate with chroma samples
at half resolution, i.e. each line consists groups of four samples:
y1,u1,2,y2,v1,2). YUV to grayscale conversion is performed by a
subroutine on the host, depositing the result in a buffer of host-
mapped memory provided by CUDA. (This step would be unneces-
sary if a monochrome digital camera were used.) Next, the GPU is
commanded to copy this buffer to an area of device global memory.
The next step, calculation of the mean value, is done by first con-
verting the entire image to single precision floating point, and then
summing. Figure 3 illustrates the case in which the centroids of
both the pupil and CR have moved relative to the previous frame,
necessitating relocation of the ROIs and recalculation of the cen-
troids. Figure 3 also shows the execution profile when the same
computations are performed exclusively on the host.

System positional accuracy has been assessed using a simple 9-
point calibration and linear regression of the fixation point screen
coordinates on the pupil-CR position difference vector. Sixty sam-
ples were obtained at each fixation location; the RMS deviation of
the reconstructed points from the fixation points was 0.56 degrees
vertically and 0.28 degrees horizontally.

0 1 2 3 4 5 6 7 8 9

time (msec)

	yuv2gray (host)	

	input copy	

	mean computed	

	threshold applications	

	pup centroid computed	

	pup centroid computed	

	pupil results stored	

	cr centroid computed	

	cr centroid computed	

	CR results stored	

	End of script	

Figure 3: Timeline plot showing execution times for various com-
ponents of the algorithm on the host (upper bars, in red), and on the
GPU (lower bars, in green).

5 Challenges and future work

Although the current prototype system does not yet represent a sig-
nificant advance in the state-of-the-art, we are nevertheless encour-
aged by these preliminary results, and see a number of areas where
significant improvements may be made. Perhaps the most obvious
is the method by which the pupil is located, namely thresholding
followed by a centroid computation. Biases are introduced when
the pupil region is occluded by eyelashes, or intersects with the
CR. A superior method is to locate the pupil edge pixels, and fit a
shape such as an ellipse, thus providing information not only about
size and location but also shape and orientation [Zhu et al. 1999; Li
et al. 2005].

While our prototype system has no trouble running at 30 or 60 Hz,
the frame processing time of 4 milliseconds imposes a maximum
frame rate of 250 Hz. To work with cameras capable of even higher
frame rates (which is desirable for some applications), additional
optimizations must be obtained. The development philosophy of
QuIP was that the overhead of script interpretation was relatively
insignificant compared to the computations being dispatched by
the interpreter. But when smallish ROIs are processed by power-
ful GPUs, this is no longer the case. Current development efforts
seek to enhance QuIP by adding the capability to create and store
sequences or ”chains” of operations in a list structure, akin to the
idea of a ”display list” in graphics programming. All error checking
is done when the chain is created, so the chain can be executed with
minimal overhead. This solution retains the advantages of coding
in the scripting language, while getting most of the speed that a
compiled program could attain.

Further speed increases could likely be obtained by applying a tech-
nique known as pixel pipelining. In the current design of QuIP, all
basic operations are done on a per-image basis; when a series of
operations is required, each basic operation is performed over the
entire image, with the results stored in a temporary buffer. When
pixel pipelining is applied, all of the operations needed at a pixel
are performed together, eliminating the need for memory accesses
to temporary storage. The disadvantage of this approach is that
the interpreter cannot be built with all possible computations pre-
compiled, and some form of just-in-time compilation would be re-

quired. This technique would likely be beneficial for both the GPU
and the host CPU.

Inspection of figure 3 shows that much of the GPU’s time is spent
computing centroids. A dedicated centroid-computing function us-
ing pixel pipelining techniques would likely provide a significant
speed increase, and would be much simpler to implement than a
general-purpose QuIP compiler.

6 Conclusion

We have described a basic gaze tracking system implemented in a
scripting language controlling GPU-accelerated image processing.
Powerful GPUs are readily available and inexpensive: a new graph-
ics card with the nVidia GeForce GTX 560 Ti, which has 384 cores
(compared to 240 in the GTX 285 used in the system described in
this paper) retails for around $250. These cards provide an easy
way to super-charge a modest host computer. The QuIP interpreter
is freely-available, and allows developers to exploit the power of
the GPU using a high-level language, while ignoring the most of
the details of CUDA programming. We hope that these develop-
ments may spawn a new generation of low-cost video-based gaze
tracking systems.

7 Acknowledgments

Supported by the System-Wide Safety and Assurance Technolo-
gies (SSAT) project of NASA’s Aviation Safety program (AvSP).
Thanks to Tina Beard and four anonymous reviewers for comments
on the manuscript.

References

AMIR, A., ZIMET, L., SANGIOVANNI-VICENTELLI, A., AND

KAO, S. 2005. An embedded system for an eye-detection sensor.
Computer Vision and Image Understanding 98, 104–123.

BEYMER, D., AND FLICKNER, M. 2003. Eye gaze gracking using
an active stereo head. In Proc. IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition (CVPR),
vol. 2, IEEE, 451–458.

FANG, J., VARBANESCU, A. L., AND SIPS, H. 2011. A com-
prehensive performance comparison of CUDA and OpenCL. In
Proceedings of the International Conference on Parallel Pro-
cessing, IEEE, 216–225.

HENNESSEY, C., NOUREDDIN, B., AND LAWRENCE, P. 2008.
Fixation precision in high-speed noncontact eye-gaze tracking.
IEEE Transactions on Systems, Man and Cybernetics, Part B:
Cybernetics 38, 289–298.

LI, D., WINFIELD, D., AND PARKHURST, D. 2005. Star-
burst: A hybrid algorithm for video-based eye tracking combin-
ing feature-based and model-based approaches. In Proc. IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, Workshop on Vision for Computer-Human Inter-
face, IEEE, 79.

MODEL, D., AND EIZENMAN, M. 2011. User-calibration-free re-
mote eye-gaze tracking system with extended tracking range. In
Proc. Canadian Conference Electrical and Computer Engineer-
ing (CCECE), IEEE, 1268–1271.

ZHU, D., MOORE, S. T., AND RAPHAN, T. 1999. Robust pupil
center detection using a curvature algorithm. Computer Methods
and Programs in Biomedicine 59, 145–157.

