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Recovery of motion parameters from distortions in scanned images

Jeffrey B. Mulligan
NASA Ames Research Center

Abstract: Scanned images, such as those produced by the scanning-laser ophthalmoscope (SLO), show dis-
tortions when there is target motion. This is because pixels correspondingto different image regions are acquired
sequentially, and so, in essence, are slices of different snapshots. While these distortions create problems for image
registration algorithms, they are potentially useful for recovering targetmotion parameters at temporal frequencies
above the frame rate. Stetter, Sendtner and Timberlake [1] measured large distortions in SLO images to recover
the time course of rapid horizontal saccadic eye movements. Here, this work is extended with the goal of auto-
matically recovering small eye movements in two dimensions. Eye position during the frame interval is modeled
using a low dimensional parametric description, which in turn is used to generate predicted distortions of a refer-
ence template. The input image is then registered to the distorted template usingnormalized cross correlation. The
motion parameters are then varied, and the correlation recomputed, to find the motion which maximizes the peak
value of the correlation. The location and value of the correlation maximum are determined with sub-pixel precision
using biquadratic interpolation, yielding eye position resolution better than 1 arc minute [2]. This method of motion
parameter estimation is tested using actual SLO images as well as simulated images. Motion parameter estimation
might also be applied to individual video lines in order to reduce pipeline delays for a near real-time system.

1. Introduction

Video image sequences are often used to track ob-
ject motion. Unless a special high frame-rate camera is
used, the recovered motion is usually sampled in time at
the video frame rate (50-60 Hz). While low resolution
sampling is adequate for many applications, documenta-
tion of high-speed events often requires higher temporal
resolution. For images obtained with a scanned system,
in which individual pixel values are acquired at different
times, it is possible to obtain higher temporal resolution
for the motion of extended targets. The sequential nature
of the scanning process introduces geometric distortions
in the image of a moving target. By measuring these dis-
tortions, high temporal resolution information about the
target motion can be recovered. This technique is espe-
cially useful whena priori knowledge about the possible
target motions permits a concise description using low-
dimensional parametric models, because this reduces the
space of possible distortions which must be searched. In
the following sections, expressions for the precise form of
the motion-induced distortions will be derived.
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1.1. Raster scanning

x,y position in image plane
sx(t),sy(t) position of scan at timet
fL line frequency (≈ 15 kHz)
fF frame rate (≈ 60 Hz)
iL index of current line
tS start time of current line
tL time in current line,t − tS
vS,x,vS,y scan velocities

Some imaging systems, using an electronic or me-
chanical shutter, can simultaneously capture all of the pix-
els in an image. In a scanned system, however, only a
single point is sensed at a given time, and the location of
this point is swept over the image area by electronic or
mechanical means. Here we present some definitions and
conventions that will allow us to precisely describe the
scanning process.

The imaging area is defined to be a rectangle in-
dexed by normal Cartesian coordinatesx andy. The raster
is defined by two scan functions, sx(t) and sy(t), which
represent the instantaneous beam position. These func-
tions are approximated by sawtooth waveforms (see figure
1). By convention, the horizontal dimension is scanned at
a relatively high frequency, called theline frequency, fL ,
while the slower vertical frequency determines theframe
rate, fF.
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Figure 1: Diagram of raster pattern on the left, with the active
portion of each line shown as a heavy solid line, and retrace as a
dashed line (see appendix). On the right, the scan functions are
shown over time.

Time t=0 in our temporal coordinate system is the
beginning of the current frame. By convention, numbering
of raster lines begins with 1; The index of the current line,
iL , is

iL = ⌊t fL⌋ (1)

We definetS to be the time of the start of the current line,
andtL to be the time relative to the start of the current line:

tS =
iL
fL
, and tL = t − tS. (2a,b)

These quantities are illustrated graphically in figure 2.
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Figure 2: Raster waveform diagram, indicating the current time,
t, the start time of the current line,tS, and the time within the
current line,tL .

The scan velocities, vS,x and vS,y, describe the
rate at which the scanning beam traverses the image plane.
When expressed in units of image widths per second,
these are approximately equal to the scan frequencies,fL
and fF (see appendix for details). We can write simple ex-
pressions for the instantaneous scan position in terms of
the scan velocities. The horizontal scan position sx(t) is:

sx(t) = tLvS,x. (3a)

In most scanning systems, the vertical scan is continuous
(partly due to ”mechanical” constraints), and

sy(t) = tvS,y. (3b)

1.2 Effects of object motion

P a target point
px(t),py(t) instantaneous position of P
ṗx(t), ṗy(t) instantaneous velocity of P

p̈x(t), p̈y(t) instantaneous acceleration P

x0,y0 position of P at timet=0
xP,yP position of P in scanned image
tP time P is scanned

We consider a fiducial point on the target, located
at coordinates (x0,y0) at time 0. Let the position at timet
be expressed by the functionspxt andpyt. These positions
can be expressed using Taylor series, whereṗx(0) is thex
velocity at time 0,̈px(0) is the acceleration, and so on:

px(t) = x0+ ṗx(0)t +
1
2

p̈x(0)t
2+ ... (4a)

py(t) = y0+ ṗy(0)t +
1
2

p̈y(0)t
2+ ... (4b)

We wish to know the position of the given point,
(xP,yP), in the acquired image. When the point’s trajectory
intersects the raster, the time at which the point is scanned,
tP, will be:

tP =
yP

vS,y
+

xP

vS,x
, (5a)

≈ yP

vS,y
. (5b)

By making the approximation, we ignore the de-
pendence on horizontal position. This is justified on the
grounds that vS,x is large, and so this term will be small.
By definition,yP = py(tP), and so the value oftP obtained
in equation 5b may be substituted into equation 4b, which
can then be solved foryP. The result can then be used to
evaluate equation 4a to obtainxP.

In general, the raster will not pass directly over
the point, and features of finite size will often be repre-
sented in more than one scan line. We assume that lit-
tle target motion occurs during a single line time, so the
position of a feature located between two scan lines can
be accurately determined by interpolation, and results ob-
tained for points lying directly on the raster will hold for
all points.
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1.3 Example: constant object velocity

vT,x,vT,y target velocity,̇px(t) = vT,x

We can use the results of the preceding section to
generate simulated distorted images for various motions.
We consider first the simple case where the target moves
with constant velocity, (vT,x,vT,y):

px(t) = x0+vT,xt, (6a)

py(t) = y0+vT,yt. (6b)

Following the strategy outlined above, we con-
struct the following equation foryP:

yP = y0+
vT,yyP

vS,y
. (7a)

=
y0vS,y

vS,y−vT,y
, (7b)

= y0+
vT,yy0

vS,y−vT,y
. (7c)

We can use this result to derive a corresponding expres-
sion forxP:

xP = x0+
vT,xy0

vS,y−vT,y
. (8)

Several important points may be noted from these
equations: first, the deviation in feature position for each
component is proportional toy0, the vertical position of
the feature in the image, and to the corresponding compo-
nent of object velocity. We also notice that when vT,y ≥
vS,y (object moving faster than the raster), the solution cor-
responds to a negative value oft, and does not correspond
to a point in the current frame.

Distortions arising from a target speed of
vS,y
4 are il-

lustrated in figure 3. The left-hand patch shows the image
obtained when a square grid target is moved at the right,
while the right-hand patch shows the image resulting from
upward motion.

Figure 3: Image distortions of a regular grid for constant velocity
motion to the right (left) and upwards (right).

1.4 Example: constant object acceleration

ax,ay target acceleration,̈px(t) = ax

We assume the object accelerates from rest at time
0 with accelerations ax and ay:

px(t) = x0+
1
2

axt
2
, (9a)

py(t) = y0+
1
2

ayt
2
. (9b)

We first consider the case where ay = 0, i.e. a
purely horizontal motion. In this case, the vertical position
of the fiducial point will not be changed, and the raster will
scan the point at timetP = y0

vS,y
. Substituting this value

into equation 9a, we obtain:

px(tP) = x0+
axp2

y(0)

2v2
S,y

. (10)

Equation 10 is quite similar to equation 8, except that here
the deviation is proportional to thesquare of the vertical
position. This case is illustrated on the left side of figure
4.

The case of vertical accelerations is more complex,
due to the interaction between the accelerating motion
with the vertical scan. As we did above with equation
7a, we begin by constructing an equation inyP:

yP = y0+
ayy2

P

2v2
S,y

, (11a)

which after application of the quadratic formula yields:

yP =
vS,y(vS,y± γ)

ay
, (11b)

where
γ =

√

v2
S,y−2ayy0. (12)

The smaller of two solutions corresponds to the first coin-
cidence of the raster and the point, while the larger only
exists when the acceleration is so large that the point sub-
sequently overtakes the raster. When the acceleration is
so large that the rasternever encounters the point,γ is
imaginary.

After more algebra, we can also obtain this result
for xP:

xP = x0+
v2

S,y−ayy0±vS,yγ
ay

. (13)

These results are used to compute the images in
figure 4. For horizontal acceleration, we see that the ver-
tical grid lines become curved, while for vertical acceler-
ations the grid is compressed nonuniformly.
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Figure 4: Image distortions resulting from constant acceleration
(from rest) of the target to the right (left panel) and upwards
(right panel).

Figure 5: Image distortions resulting from a smoothed step mo-
tion to the right (left panel) and upwards (right panel).

In general we observe that horizontal motions gen-
erate horizontal shearing of the image proportional to the
instantaneous velocity, and that vertical motion similarly
generates vertical compression. Figure 5 illustrates the
case of a rapid smooth displacement during the middle of
the scan. Mathematical details are omitted in the interest
of brevity.

2 Methods

2.1 Basic registration methods
The basic registration method, described in detail

by Mulligan [2], was developed to process retinal images
obtained from a camera-based video ophthalmoscope. It
assumes the existence of atemplate,which is a large im-
age of the object. It is assumed that all input images can be
registered wholly within the template. Each input image
is registered to the template by finding the maximum of
the normalized cross correlation. The cross-correlation is
computed by taking the product of the Fourier transform
of the input and the complex conjugate of the template
transform, then taking the inverse Fourier transform. The
resulting correlation image is then multiplied by a normal-
izing image which accounts for the fact that the energy in
the template image varies in space. The normalizing im-
age is computed by convolving the pixel-wise squared im-
age of the template with a mask corresponding to the valid

input area.
Subpixel interpolation of the correlation maximum

is performed by first locating the maximum value in the
correlation image, and then performing biquadratic inter-
polation on the 3 by 3 neighborhood of pixels centered
on the maximum. A band-pass filter applied to the in-
put images blurs the the cross-correlation, allowing ac-
curate interpolation. The method has been shown empir-
ically to produce errors less than 0.1 pixel [3, 2]. The
peak value of the correlation (which occurs between the
sample points) is interpolated using the parameters of the
best-fitting quadratic surfaces, computed using the singu-
lar value decomposition.

2.2 Motion parameter estimation
Estimation of the target motion profile is done by

computing the distortions of the template image resulting
from a set of sample guesses. For each guess, the nor-
malized cross correlation between the input image and the
distorted template is computed, and the parameter space
is searched to find the motion which produces the largest
normalized correlation C with the input. We can think of
the difference 1-C as representing an ”error” between our
guess and the true state of the world, although this may
not reach a value of 0 even for the correct motion. The
key to a practical solution is minimizing the number of
dimensions of the space of possible motions. For exam-
ple, assuming that the target moved with constant velocity,
then there are only two unknown parameters of the warp,
vT,x and vT,y.

A straightforward but expensive approach is to
finely sample the parameter space, and compute the cross-
correlation for each candidate motion. The peak value of
each correlation is stored in an array, indexed by the mo-
tion parameter values. This array can then be examined to
find the maximum, corresponding to the best-fitting mo-
tion parameters. The space can then be resampled on a
finer grid, if desired, to obtain a more precise estimate.
The feasibility of such an approach largely depends on the
error surface character. If it is smooth, the initial sampling
can be quite coarse and yet still provide a good estimate
of the maximum through interpolation.

Figure 6 shows velocity space images of the cor-
relation maxima, for uniform translation of a retinal tem-
plate (shown ahead in figure 8). It can be seen that, at this
resolution, the values decrease monotonically with dis-
tance from the true parameter values. In such a case, we
can obtain reasonable estimates at greatly reduced cost by
sampling more coarsely.
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Figure 6: Velocity space image showing the peak value of the
normalized cross correlation, evaluated on a 32x32 grid of trial
velocities used to warp the template. Input image was warped
in accordance with a simulated horizontal motion of 1.25 image
widths per frame, sample grid spans the range±2 image widths
per frame. The gray level range has been scaled to span the range
of correlation values (0.114 - 0.940).

2.3 Successive refinement

εi ith estimation error
∆vi ith parameter sample spacing

After obtaining an initial estimate of the target mo-
tion from a coarse sampling of the parameter space (see
section 2.2), we may wish to reduce the estimate error
by resampling the parameter space more finely in the
neighborhood of our current estimate. In the current im-
plementation, all estimates are obtained by using the bi-
quadratic interpolation procedure (developed to localize
cross-correlation peaks) to 3x3 sample arrays from the pa-
rameter space error surface. The array is sampled at the
current estimate (initially 0), and the flanking samples are
separated by∆v. After the initial estimate is obtained, a
new 3x3 sampling grid is placed at the location of the cur-
rent estimate. The sample spacing of the new grid is equal
to the previous sample spacing, times a fractionβ , which
can be thought of as the reciprocal of the ”zoom” factor. If
beta is large, i.e. close to 1, the error in the new estimate
may not be significantly reduced. If it is too small, how-
ever, then the true maximum will lie outside of the region
spanned by the sample array. A one-dimensional example
with a value ofβ=0.5 is shown in figure 7.

Experimentation has shown that the interpolation
procedure can be unstable when the maximum sample
value occurs at the array edge; the samples can be fit with
a hyperbolic surface, or an ellipsoidal surface which is
concave up. Therefore, if the maximum value is not ob-
tained at the center sample, the array is shifted by one
sample until the maximumdoes occur at the center. In

two parameter estimation, each lateral or vertical shift re-
quires the computation of 3 additional correlations, while
diagonal shifts require 5. (This problem does not arise
when interpolating cross-correlation images because the
entire correlation image is available: we can perform an
exhaustive search for the maximum sample value, and in-
sure that it falls at the center of the interpolation array.)

ε

∆∆ vv

Figure 7: Estimation of the extremal position by quadratic inter-
polation from 3 samples, illustrated in one dimension. The true
underlying error function is a Gaussian. In the initial estimate
(top), the quadratic fit is poor, and localization error is signifi-
cant. This initial estimate is used as the center of a new array
of samples, at half the spacing (center). The error is reduced,
although the fit is still poor. In the third iteration (bottom), the
fit is good and the error is small.
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Ideally, we would like for the new sample spacing,
∆vi+1, to be approximately equal to the estimation error
on the previous iteration,εi . While we do not in general
have a priori information about the nature ofε as a func-
tion of ∆v, when the error function is smooth the quadratic
fit will improve as∆v decreases, andε will approach zero,
or more precisely some small value determined by the nu-
merical precision of the machine and the noise level in the
input images. For a particular template image, the depen-
dence ofε on ∆v may be precomputed for a set of rep-
resentative velocities, and the results used to construct a
table ofβ ’s.

When there are no local extrema on the error sur-
face, this procedure works well. This is an unrealistic as-
sumption, however, because numerical imprecision, input
noise, and the structure of the template autocorrelation all
add complexity to the error surface. What is needed is
the analog of an antialiasing filter in the parameter space
domain. Remember that when a signal is sampled at fre-
quency fS, the signal must first be prefiltered to remove
frequencies above theNyquist frequency, fS/2. Failure to
do so causes super-Nyquist frequencies to appear as low-
frequency ”aliases,” which cannot be distinguished from
the actual low frequencies in the input.

When we sample the parameter space at some
spacing∆v, we would like to insure that there are no
bumps and wiggles occurring between our sample points
which will corrupt the interpolation process and cause the
procedure to become trapped in a local extremum. The
basic idea is similar to the ”coarse-to-fine” approach, pro-
posed for stereo correspondence [4] and motion estima-
tion [5]. In those cases, blurring is performed in the image
domain, but here what we would like here is a template
transformation which will result in blurring of the error
surface. Averaging together the distorted templates corre-
sponding to a neighborhood of the parameter space is not
exactly correct because of the (nonlinear) maximum oper-
ation that we perform in the construction of the error sur-
face, but something similar may produce a useful result.
Rucklidge [6] has described a related approach which is
immune to some of the problems of coarse-to-fine strate-
gies, while offering similar computational savings.

2.4 Exploiting features of the cross-correlation
While the successive refinement described in the

previous section performs well while computing many
fewer correlations than would be required by exhaustive
search at the smallest sample spacing, it is still fairly com-
putationally expensive. To reduce the amount of compu-
tation required, an intriguing possibility is suggested by
the appearance of the correlation images. Figure 8 (top
row) shows a portion of a retinal template which we use as
our test image, together with a distorted version produced
by a simulated eye movement. The third row of figure 8

shows the autocorrelation of the template on the left, to-
gether with the cross correlation of the template with the
distorted version on the right.

Figure 8: Top row: a portion of a retinal image template (left),
together with a version distorted by a simulated eye movement
of constant velocity. Second row: the images from the first
row are band-pass filtered to accentuate the retinal blood ves-
sels, and windowed to reduce edge artifacts. Third row: the
autocorrelation of the template (left), and the cross correlation
of the template and the input. Because the gray level range has
been matched to the image extreme values, more detail is seen
in the cross-correlation image on the right, which has a lower
peak value. The long diagonal streak is related to the promi-
nent vessel to the lower right of the optic disk. Bottom row: the
cross-correlation is deconvolved with the template autocorrela-
tion (left). The sharp diagonal feature is related to the motion
trajectory, and may be identified by thresholding (right).
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In the cross-correlation image, the central peak is
smeared out in the direction of motion. To see why this
should be so, recall that when scanning a moving object,
the position in the top of the frame is different from the
position in the bottom of the frame. The peak in the
cross-correlation image indicates the relative location of
the object; as the object moves during the scan, this peak
shifts accordingly. When the autocorrelation of a tem-
plate image patch is roughly independent of the its loca-
tion (e.g. high-pass noise), the cross correlation image
can be thought of as the convolution of the autocorrela-
tion with the motion trajectory. For less uniform images,
the trajectory may show gaps, corresponding to portions
of the template in which there is little or no energy.

We can attempt to solve for the trajectory by de-
convolving the cross-correlation image with autocorrela-
tion of the template; the result of this operation is shown
in the bottom row of figure 8. The bottom row of figure
8 also shows the result of clipping the deconvolved image
from below at 0, rescaling the positive values to the range
0-1, and thresholding at a value of 0.4. A simple machine
vision algorithm might look for a line segment in this im-
age, and obtain a rapid estimate of vT,x and vT,y from the
location of the endpoint.

3 Application to SLO images
The registration methods described were devel-

oped to track eye movements using images obtained with
a camera-based video ophthalmoscope [2], and were sub-
sequently applied to images obtained from a scanning-
laser ophthalmoscope (SLO) [7]. The full-field correlation
method differs from previous efforts to obtain eye position
data from SLO images [8], which relied upon the identi-
fication and localization of small discrete features, such
as vessel bifurcations. Stetteret al. [1] computed high
temporal resolution profiles of horizontal saccades from
the profiles of a few major blood vessels oriented roughly
vertically in the image, exploiting the shear distortion pro-
duced by the interaction between the vertical scan and hor-
izontal eye movements. In this section we will begin by
considering the problems encountered applying full-field
correlation techniques to these images, and discuss the use
of image distortions to recover complete two dimensional
motion trajectories.

3.1 Template construction
In the preceding section, we assumed the existence

of a template image, e.g. a large image of the target ob-
ject constructed as a mosaic of a large number of input
images. Various techniques have been proposed to auto-
mate the construction of image mosaics from sets of fun-
dus images [9, 10, 11], but these have generally been more
concerned with visualization of gross anatomical features
than the preservation of metric structure. Here, templates

are constructed from an input sequence using a boot-
strap procedure. All images are first band-pass filtered;
the high-pass component of the filter serves to accentuate
the retinal blood vessels, and remove low-frequency arti-
facts due to non-uniform illumination of the retina, while
the low-pass component attenuates high-frequency cam-
era noise. These images are optionally windowed with a
Gaussian-blurred rectangle slightly smaller than the input
to reduce edge artifacts. The first preprocessed image is
used as the initial template, and the second frame is reg-
istered with respect to it. The computed displacement is
then applied to the second frame to form a scrolled copy.
Sub-pixel translations are performed by appropriate phase
shifts in the Fourier domain [12]. The shifted image is
then summed into an accumulation buffer, while a sim-
ilarly shifted mask of 1’s is summed into a pixel count
buffer. The current template is a weighted average of
all of the previously registered frames, computed as the
pixel-wise quotient of the accumulation and count images.
Frames whose normalized correlation with the template is
below a threshold (typically around 0.5) are excluded. A
representative template image is shown in figure 9.

Figure 9: Registration template constructed from 120 SLO field
images.

Once a template has been constructed, the registra-
tion quality can be assessed by creating a video sequence
in which the input images are overlaid on the template, af-
ter having been translated to provide the best match to the
template. When this is done well, what is seen is a station-
ary template pattern, with a smaller noisy window moving
over it. Registration errors are manifested as motions of
the template structure within the moving window, while
the position of the window is related to the computed di-
rection of gaze. A static version of this is presented in
figure 10, where a single nominally registered input im-
age is superimposed over the template shown in figure 9.
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Figure 10: Template image shown in figure 9 overlaid with a
single input image. Misregistration can be observed at the upper
border, while registration at the right and lower edges appears to
be good.

When the quality of registration is visualized as de-
scribed above, non-rigidity of the template structure is of-
ten observed, indicating the occurrence of registration er-
rors. There are two potential sources of these errors. The
first is distortion introduced by a moving eye (the topic of
this paper). The second results from template construction
errors. Stetteret al. measured the static SLO distortion
by holding a sheet of graph paper in front of the instrument
and observing the image transformation resulting from the
SLO optics. They used the measured distortion to correct
the image feature locations used in their method.

If not corrected for, distortions such as that ob-
served by Stetteret al. will corrupt the template con-
struction process, because globally correct matches will
not be obtained. The resulting template distortion depends
not only on the inherent imaging system distortion, but
also on the positions which are sampled and the order in
which they used to compute the template. Another poten-
tial source of distortion results from the fact that the retina
is a spherical surface, which is projected to a plane by the
imaging system. This distortion is negligible for excur-
sions of less than 4 degrees [13], but must be incorporated
into the registration process for accurate construction of
large templates. Error-free templates are critical for ob-
taining eye movement estimates which are limited only
by the noise in the images.

3.2 Parametric models of eye movements
Before attempting to estimate high temporal reso-

lution eye movements from SLO images, it is useful to
first consider what is known about eye movements (an ex-
cellent survey is provided by Kowler [14] ). The highest
velocities reached by the eye are during the execution of
saccadiceye movements, which will therefore be of most

relevance to the present work. Saccades are rapid, ballistic
changes in fixation, which can be superimposed over other
smooth movements. Small saccades which occur during
”steady” fixation are sometimes referred to asmicrosac-
cades. Lawful relations are observed between saccadic
amplitude, duration, and velocity [15, 16, 17], so that sac-
cades in a given direction can be described by a family of
functions. A good analytic description of these functions
is provided by the density function of the gamma distribu-
tion [18], which has three parameters which are related to
duration, peak velocity, and skewness or asymmetry. (The
situation is more complicated for oblique saccades, where
asynchronies between different muscle group activations
can produce ”looping” saccades.)

Because the largest saccadic velocities are well be-
low the scan velocities of the SLO, reasonable template
registration is obtained even during saccades. Thus, the
positions sampled at the frame rate (obtained by correlat-
ing the uncorrected images with the template) will allow
us to identify the occurrence of large saccades, and for
large saccades whose durations spans several frames we
can make good predictions about average velocity and ac-
celeration within each frame, speeding the initial portion
of the parameter search. Microsaccades are too brief to be
detected in this way, but may be revealed by dips in the
value of the correlation of the raw input with the template.

3.3 Ocular torsion
In addition to rotating about horizontal and verti-

cal axes to redirect gaze, the eye is also capable of rolling
around the line of sight, a movement which is known as
ocular torsion. There is a systematic variation of torsion
with deviation of gaze [19], as well as small fluctuations
during fixation [20]. The occurrence (and measurement)
of torsional eye movements complicates the registration of
fundus images, although a search procedure similar to that
described above for finding image warps has been able to
recover simulated torsions with an accuracy of around 0.1
degree [2], which is comparable to results obtained from
video images of the iris [21, 22, 23, 24]. Ott and Eckmiller
[24] used SLO images to measure ocular torsion during
smooth pursuit by measuring the change in the slopes of
lines connecting image features. They do not mention the
existence and correction of the scan induced shear in the
moving target image, which is significantly smaller than
the measured effects, but significantly larger than the at-
tainable measurement precision.

Fortunately, torsional eye movements are relatively
slow, so that there is very little rotation during the scan
of a single frame. Furthermore, this slowness means that
the torsional state of the eye can be well predicted from
the state in the preceding frames. Therefore, the only
distortions which have been considered in this paper are
those resulting from pure translation of the entire target,
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although the methods are completely general.

3.4 Superresolution
When the target contains frequencies above the

Nyquist limit of half the sampling rate which are passed
by the point spread function of the imaging system,alias-
ing will occur. This term refers to the fact that sam-
ples from a signal above the Nyquist frequency are in-
distinguishable from samples from a corresponding signal
composed entirely of frequencies below the Nyquist fre-
quency. This is true for single images, but not strictly
so when we consider multiple images with slight posi-
tional offsets. When the target moves by a small amount,
all of the sub-Nyquist frequencies in the image move by
the same amount. Aliases of super-Nyquist frequencies,
on the other hand, have a different motion, like that of a
Moire pattern. Reconstructing the super-Nyquist frequen-
cies from multiple samples of the aliases is known assu-
perresolution [25, 26, 27] (the term has also appeared
in the optics literature to describe physical situations in
which the resolution is increased by a factor of 2 or

√
2

above the nominal diffraction limit [28] ).
Can we apply superresolution techniques to SLO

images? In other words, are there any aliases of retinal
image frequencies above the Nyquist limits imposed by
the SLO raster? The following anecdotal observation sug-
gests that the answer is yes: Stevenson [29] has noted that
the individual raster lines of the SLO can be resolved by
the eye (of the subject). This means that the spot size
of the illumination beam is smaller than the line spacing.
The retinal image is effectively low pass filtered by a filter
whose kernel is the spot profile of the laser beam con-
volved with the eye’s optical point spread function. This
low-pass filter functions as an effective anti-aliasing fil-
ter only when its width is comparable to the line spac-
ing. When the raster lines are clearly resolved, two im-
ages whose vertical position differs by half the line spac-
ing can be viewed as interlaced components of an image
with twice the vertical resolution, and by analogy a se-
quence of slightly-misregistered images can be combined
to produce a high-resolution image, provided the input im-
ages can be accurately registered.

3.5 Application to laser surgery
There is a current need for real-time retinal track-

ing and stabilization in the medical community. Laser
surgery consists of delivering a brief, high energy pulse
to a small retinal area. The target area is selected by the
physician, who presses a button indicating that an aiming
cursor has been placed over the target area in an ophthal-
moscopic retinal image. There is a small, but finite, time
window (a few hundred milliseconds) between the physi-
cian’s decision that the cursor is placed, and the actual
delivery of the laser pulse. During this interval, the pa-

tient could make an eye movement causing the pulse to
be delivered to the wrong part of retina, possibly injur-
ing the fovea or optic nerve head! A safer system would
would track eye movements and permit the physician to
indicate the target location on a stabilized image, while
stabilization optics keep the laser accurately targeted in
the presence of patient eye movements.

A nearly real-time stabilizer might be constructed
by registering individual SLO raster lines to the template
as they become available from the instrument, eliminating
the 16 msec pipeline delay needed to buffer an entire video
field. Because the video line rate of 15 kHz is much higher
than the bandwidth of natural eye movements, it should be
possible to make accurate predictions by correlating each
line with just a few lines of the template in the neighbor-
hood of the expected position. Computing a small number
of 1-D correlations between selected lines is considerably
less computation than the complete 2-D cross correlation,
and is likely to be tractable with modern digital signal pro-
cessing circuits. The problem is complicated somewhat if
one wishes to measure ocular torsion, although this may
not be necessary to produce a useful surgical stabilizer.

4 Conclusions
While more work is needed to refine motion pa-

rameter estimation to extract high time resolution eye
movement data from SLO image sequences, these results
suggest that the technique is practical. Increased temporal
resolution, combined with the high precision made possi-
ble by sub-pixel interpolation, make this approach com-
petitive with other high-resolution techniques, such as the
more invasive search coil [30].
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5. Appendix: Minutiae of raster scanning

τA active time
τR retrace duration
αL line scan duty cycle,τAL fL
αF frame scan duty cycle,τAF fF

In our discussion of raster scanning, we ignored
the fact that raster retrace requires a finite duration, and
stated that the scan velocities (in image widths per second)
were approximately equal to the scan frequencies in Hz.
In this appendix we will present a more precise formula
for the scan velocities, and discuss some additional issues
concerning raster geometry.

Typically, image data are acquired, or displayed,
only during a portion of the scan periods, called theactive
time, of durationτA ; the remainder of each scan period is
spent returning the beam to the starting position, known as
retrace, of durationτR. These quantities are shown with
respect to a typical scan waveform in figure 11. In the
raster diagram in figure 1 (section 1.1), the active portions
of the scan lines are shown as solid lines, while the retrace
portions are shown as dashed lines. Theduty cycle α of
the active segment for each scan is defined as the product
of the active time and corresponding scan frequency:

αF = τAF fF, and αL = τAL fL . (14a,b)

The scan velocities,vS,x and vS,y, are equal to the cor-
responding scan frequency divided by the corresponding
duty cycle times the image width (equal to 1 due to our
choice of units):

vS,x =
fL
αL

, vS,y =
fF
αF

. (15a,b)

τ
A

τ
R

t

x

Figure 11: Diagram of raster waveform showing active timeτA
and retrace timeτR.

In the television standard defined by the National
Television Standards Committee (NTSC) [31, 32], the

scan frequencies have a value offF ≈ 60 Hz, and
fL = 262.5 fF. The significance of the horizontal fre-
quency being a half-integral multiple of the frame rate is
that two successive ”frames” are vertically offset by half
the line spacing, known asvertical interlace (see figure
12). These two half-frames are referred to asodd and
even fields,determined by the parity of the line numbers.
Treating fields as ”frames” is equivalent to superimpos-
ing vertical square wave motion on the target at half the
field rate, with amplitude of 0.5 line, and so may easily be
correctedpost hoc.

The raster shown in figure 1 depicts a continuous
vertical scan, resulting in the image samples being taken
from slightly oblique lines. Images manipulated in a digi-
tal frame buffer, however, are often assumed to be samples
obtained from a rectangular sampling grid, corresponding
to a discontinuous vertical scan (see figure 13). In this
case,

sy(t) = tSvS,y. (16)

The small errors introduced by this approximation vanish
as fL >> f f ; when necessary they may be corrected by
resampling an appropriately sheared version of the image.

x

y

y

t

x

t

Figure 12: Raster diagram similar to figure 1, showing an inter-
laced scan.

x
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x
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y

t

Figure 13: Diagram showing a rectangular raster approximation,
and the associated waveforms.
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