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Abstract

One way to describe the problem of digital halftoning
is as a search for the quantized image that minimizes the
visibility of artifacts.  To apply this approach in practice, it
is  first  to  specify  a  computational  model  for  computing
visible  error  that  can  be  used  to  rank  candidate  images
automatically.  The model may be incorporated directly into
a  search  algorithm,  or  used  after-the-fact  to  rank  images
produced  by  algorithms  that  are  more  heuristic.   These
approaches  have  been  quite  successful  when  applied  to
achromatic  images,  even  when  using  a  relatively  simple
visual  model  accounting  for  high-frequency  contrast
sensitivity  but  with  no  masking.   This  approach  can  be
directly generalized to additional dimensions such as time
and color.  Visual models based on threshold measures may
not  be  optimal  for  low  bit  rate  conditions  where
quantization noise is visible.  Instead, the degree to which
the  noise  is  effortlessly  segmented  through  perceptual
scission may influence the utility of the final image.

Introduction

     There are many situations in which we wish to display a
continuous tone image on a device with a more restricted
range  of  output  tones.   The  classic  example  is  printing,
where we have ink that is either present or not present.  Ten
or  fifteen  years  ago,  it  was  common  for  a  computer
graphics display to have 8 (or fewer) bits per pixel, which
also  prevented  direct  “truecolor”  rendering  of  images.
Even today, when full color 24 bit per pixel displays are the
norm,  there  are  still  demanding  applications  such  as
medical imaging and visual testing where we may wish to
render images which have too large or too small a dynamic
range to be rendered properly on conventional hardware.  In
many cases, digital halftoning is the answer.
     The underlying assumption of all halftoning processes is
the  display  will  be  viewed  at  a  distance  such  that  the
display device has a resolution higher than that of the visual
system.   Neighboring  display  elements  will  fall  upon  a
single  visual  receptor,  and  their  levels  will  be  averaged.
Correct  implementation  of  visually  optimized  halftoning
requires  advance  knowledge  of  the  intended  viewing
conditions,  and  of  course  is  only  optimal  when  those
conditions are met.

Visual Resolution

     Perhaps the most familiar measure of visual resolution is
Snellan acuity, measured with a letter chart and expressed
by  terms  such  as  “20-20.”    The  Snellan  letters  are
presented at high contrast, and the clinician determines the
smallest  size  that  can  be  accurately  read.   A  somewhat
richer  measure  is  provided  by  the  Contrast  Sensitivity
Function  (CSF).   This  function  describes  the  sensitivity
(inverse  of  threshold  contrast)  for  a  set  of  spatial
frequencies.  Human contrast sensitivity peaks at a spatial
frequency of around 1 cycle per degree (cpd), at a value of
around 100 (corresponding to a contrast of 1%).
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     An initial limitation on contrast sensitivity is imposed by
the  optics  of  the  eye.   The  optical  performance  of  the
system can be described by the point spread function (PSF)
or optical  Modulation Transfer  Function (MTF).   Normal
(emmetropic) eyes roll off at around 60 cpd, which is well
matched to the sampling rate of the array of photoreceptors
in the  retina’s  center  or  fovea.
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  Contrast  sensitivity  also

shows  a  low-frequency  fall-off  that  is  not  predicted  by
optical  factors,  but  must  arise  from  subsequent  neural
processing.  This insensitivity to low frequencies allows us
to be content with display monitors that are brighter in the
center  than  at  the  edges,  but  is  generally  irrelevant  for
halftoning.
     Another  neural  effect  is  manifested  in  the  relative
sensitivity to patterns of different orientations.   While the
optical MTF has approximate circular symmetry (for most
eyes),  contrast  sensitivity  is  generally  less  for  oblique
orientations than for horizontal and vertical, known as the
“oblique effect.” 
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     Contrast sensitivity describes absolute threshold for a
pattern  in  the  absence  of  any  other  patterns.   This  is
appropriate  for  describing  the  visibility  of  halftoning
artifacts in large uniform areas, but is only approximately
correct  when there  are  other  spatial  patterns  present.   In
general,  the presence of  other  patterns  reduces  sensitivity
somewhat, a phenomenon that is referred to as “masking.”
Masking has been found to be frequency selective, with a
“critical  band” of one or two octaves.

7
  Masking data are

often  represented  as  threshold-versus-intensity  (TVI)
curves, in which the abscissa represents the strength (e.g.,
contrast)  of  the  mask;  the  ordinate  plots  the  strength
(contrast) of the test stimulus which can just be detected in
the presence of the given mask.   Sometimes the test  and
mask  are  the  same  spatial  pattern;  in  this  case,  the
measurement is referred to as the “increment threshold.”  At
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high levels of the masking stimulus, the threshold rises with
increasing masking level.

8,9

Assessing Halftone Quality

     It is not always easy to provide a quantitative definition
of what constitutes the visual quality of a halftone image,
but  we know it  when we see it.   Exactly  what  is  it  that
makes us like one halftone texture and not another?  At this
point,  we  should  make  an  important  distinction  between
what we will call “fine-scale” and “coarse-scale” halftones.
Fine-scale  halftoning  refers  to  situations  in  which  the
display elements  making up the halftone  texture  are very
small (compared to visual resolution), as is often the case
for printers.  In this case, the halftone texture is likely to be
invisible,  or  at  least  near  threshold,  and  the  threshold
models referred to in the preceding section are appropriate.
When  the  halftoning  elements  are  large,  however,  the
pattern is likely to be quite visible, and it is not obvious that
threshold  models  are  at  all  suitable  for  describing  visual
quality in this case.  Ironically,  most papers on this topic
present  example  patterns  in  which  the  pattern  is  clearly
visible  (even  if  this  requires  magnification)  so  that  the
reader  can  see  the  detailed  micropatterns  produced  by
different algorithms.  While it is true that this is necessary
to see the fine-scale differences, it is perhaps sub-optimal
for assessing visual quality.
     There are some situations where coarse-scale halftoning
is the only option, such as rendering images for display on
low-resolution  computer  screens.   In  this  situation,
invisibility  of  the  halftone  pattern  may be  an  impossible
dream.  In this case, minimizing the visibility of the texture
may be less  important  than  minimizing  interference  with
the intended image content.  While it is not obvious how to
do  this,  one  general  principle  might  be  to  minimize  the
local  spectral  overlap  between  the  source  image  and  the
error image.  In the remainder of this paper we will restrict
our attention to visibility-based approaches.
     A common approach
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to computing halftone quality is

as follows: first, an error filter is defined, representing the
low-pass  characteristic  of  the  visual  system.   It  is
convenient to define this filter in the space domain, where it
can  have  a  restricted  region  of  support  (3x3,  5x5,  etc.).
Next, an error image is computed by subtracting the desired
values from the halftone values.  This error image is then
blurred  by  application  of  the  filter.   Finally,  the  sum of
squares  of  the  blurred  values  is  computed  to  produce  an
overall measure of error.  While the exponent of 2 is almost
universally  used  for  error  summation,  there  is  no  firm
theoretical basis for this.  Using a higher exponent (such as
4) should give higher weighting to the largest errors, which
might be desirable in a situation where the errors are mostly
invisible,  except  for a few artifacts.   Curiously,  however,
when we redo the analysis done in our 1992 paper
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using

the  exponent  of  4  instead  of  2,  we  obtain  the  same
condition  for  flipping  a  pixel,  suggesting  that  these  two
metrics produce the same ranking of halftone patterns.

Attaining Quality

     Halftoning methods can be divided into two classes:
those that directly incorporate a visual model, and use it in
an  error  minimization  loop,  and  those  that  employ  an
effective heuristic, which although not directly based on a
visual model nevertheless produces good results.  Most of
the early work, as exemplified by ordered dither
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 and error

diffusion
15

 falls into the latter category.  These tend to be
single-pass algorithms that are relatively easy to compute.
More  recent  methods  that  directly  incorporate  the  visual
model
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 tend to be iterative procedures,  and are much

more computationally intensive.  The general approach is to
start  with an initial  image (which might  be the output  of
another algorithm, random noise, or whatever you like) and
sequentially visit individual pixels and try to improve the
total  error  at  that location.   In the method we call  “strict
descent,”
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 only changes to the single pixel in question are

considered.   Alternatively,  changes  to  the  pixel  and  its
neighbors  can  all  be  considered.   In  the  method  called
“Direct  Binary Search”
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 up to 8 changes  are considered,

corresponding to exchanging a pixel’s value with each of its
8 nearest neighbors.   Because this method only considers
exchanges,  the  total  number  of  on  and  off  bits  is  not
changed, so choice of the initial  image is  important.   We
have obtained good results using a 9-way search in which
we  consider  both  flipping  the  pixel  in  question,  and
exchanging with each of 8 neighbors.

Extensions to Color

     The ideas  from the preceding sections  can be easily
generalized to the case of color.  Lights of different colors
can  be  characterized  by  their  “luminance,”  which  is  a
spectrally  weighted  energy  measure  that  captures  how
effective a given light is at evoking a sensation of flicker or
motion.  When the different colors that make up a pattern
are matched in luminance, the resulting pattern is said to be
“equiluminant” or “isoluminant.”  Vision for equiluminant
stimuli is characterized by two main differences: first, there
is diminished spatial  and temporal  resolution, and second
the  chromatic  CSF  does  not  show  the  low-frequency
decline seen for achromatic patterns.

1,17

    The reduced spatial acuity of the chromatic system has
suggested  ways  to  improve  halftone  quality  by  moving
error  from  the  luminance  component  to  the  chromatic
component,  where it will presumably be less visible

12,13,18
.

For  an  image  represented  by  red,  green,  and  blue
components,  we might begin by independently  halftoning
each  color  component  down  to  1  bit,  then  combining  to
form an image with 8 different basic pixel colors.  (At least,
this is reasonable for images to be viewed on an emissive
display  such  as  a  computer  monitor,  where  the  color
components combine additively.  It may not be appropriate
for the printing situation, depending on the characteristics
of the inks.)  In this case, we would expect the locations of
“on” pixels in each of the color planes to be independent.
For example, in a region with 50% red pixels on and 50%
green  pixels  on,  we would  expect  to  find  approximately
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25% of the pixels colored with each category: red, green,
yellow, and black.  Clearly, we can attain the same space-
average yellow with a pattern made up of black and yellow
elements (red and green planes perfectly correlated) or of
red  and  green  elements  (red  and  green  planes  perfectly
uncorrelated).   In  the  latter  case,  however,  the  local
luminance  variation  will  be  less,  so  if  that  is  indeed  the
most visible artifact  then this pattern should be preferred.
For arbitrary colors, however, it is generally impossible to
anticorrelate the color bitplanes exactly, and the gains from
these techniques are modest.

Extensions to the Time Domain

Visual  resolution  can be characterized in  time as well  as
space, and while this is not relevant for printed halftones,
some  improvements  can  be  realized  for  dynamic  media
such as video and computer displays.  Contrast sensitivity
in  the  time  domain  is  qualitatively  similar  to  what  is
observed for the space domain.  The achromatic function is
bandpass, peaking at a frequency of around 10 Hz,

19,20
 while

chromatic  sensitivity  is  low-pass,  with  relatively  poor
sensitivity  to  high  temporal  frequencies.

1
  “Color  fusion”

occurs  for  lights  which  are  matched  in  luminance  and
exchanged  at  20  or  30  Hz;  if  the  luminances  are
mismatched,  flicker  is  seen  but  no  color  variation.
Eliminating the visible flicker in this situation is known as
“heterochromatic  flicker  photometry”  (HFP),  which
provides the operational definition of luminance.
     Many  of  the  previously  discussed  methods  may  be
directly  generalized  to  three  dimensions.   Filtered  error
minimization
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 can  easily  be  reformulated  in  terms  of

error  filtered  in  the  time  domain  as  well  as  two  spatial
dimensions,  although  the  computational  cost  rises
significantly.  In addition, there are heuristic methods that
perform  reasonably  well.   Ordered  dither
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 has  been

generalized  to  three  dimensions.
21

  Similarly,  one  can
imagine generalizing error diffusion

15
 to three dimensions,

with the addition of one or more frames of storage to hold
the  errors  to  be  diffused  in  time.   In  error  diffusion,  the
weights normally sum to one, insuring that gray levels will
be  preserved.   Carrying  this  principle  over  to  a  three-
dimensional generalization  would  have  the result  that  the
within-frame weights have a sum less than one, however,
resulting in distortion of the first frame.  While this would
be corrected eventually, a more flexible approach is that of
purely temporal  error  diffusion.
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  In  this approach,  the

first  frame  is  processed  with  a  chosen  two-dimensional
algorithm.  The erorr image is computed by subtracting the
desired  values  from  the  halftone  values,  and  this  error
image  is  subtracted  from the  desired  values  for  the  next
frame.  Weighting the error by a constant less than one will
insure that their effect is limited in time; alternatively, the
errors  from  a  small  number  of  immediately  preceding
frames  can  be  combined  using  a  finite-impulse  response
filter.   This  scheme  is  quite  general;  in  addition  to
halftoning,  it  can be applied  to  other forms of  gray level
quantization, such as MPEG or motion-JPEG compression.

Scission

Animated sequences produced with the temporal algorithms
described  in  the  previous  section  are  often  markedly
superior  to a static  rendering.   There are two reasons for
this:  first, assuming some temporal integration in the visual
system, the desired signal is represented more faithfully, as
intended.  The second factor is less obvious:  in an animated
sequence, the halftone “noise” is dynamic (changes rapidly
in  time),  while  the  underlying  image  to  be  presented  is
static.  This allows a perceptual segregation or “scission” to
occur,  in  which  the  target  image  is  seen  “through”  the
noise, much as one can see the road clearly through a dirty
windshield.   Perceptual  scission  occurs  at  the  whims  of
individual  subjects'  idiosyncracies,  but  can  be  strongly
influenced by factors such as stereo disparities.
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     Previously, we have discussed the halftoning problem in
terms of minimizing the visibility of the artifacts.  This is
appropriate for high-quality halftones in which we expect
that the errors can be made invisible, but our observation of
perceptual  scission  suggests  a  different  approach  for
situations  where  halftone  errors  will  be  visible.   To
facilitate  scission,  instead  of  trying  to  minimize  the
visibility  of  the  halftone  noise,  we  might  instead  try  to
minimize its spectral overlap with the target image.  Note
that this is the opposite of approaches that rely on masking
of artifacts  by the  target  image  itself.
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  In  that  case  we

allow more error in spectral bands where the target image
has a high power level.   Again,  this is sensible when we
expect that the artifacts will be invisible, but may impede
perception  of  the  target  image  in  the  presence  of  visible
artifacts.
     By analogy with the temporal case, we might imagine
that to facilitate scission in a static image we should attempt
to  decorrelate the  local  noise  spectrum  with  that  of  the
target image.  To incorporate this idea into methods based
on  filtered  error  minimization,  we  would  want  to  use  a
space-variant  filter  whose  properties  depend  on  the  local
image content in place of a fixed filter based on detection
data.   Because  the  phenomenon of  perceptual  scission  is
less well understood than simple thresholds, there is not a
good set of reference data from which to design the filter
properties.   Some  trial-and-error  experimentation  will
therefore be needed to explore this approach.

Summary

Computational visual models can be useful  for halftoning
algorithms, especially when plenty of preprocessing time is
available,  and  high  quality  is  the  overriding  priority.
Previous  implementations  have,  for  the  most  part,  been
based on a single channel model.  Multiple channel models
may be better predictors of quality, particularly for the case
of temporal halftoning, where a single channel model will
be blind to coherent motion.  Approaches using traditional
models are best suited to high quality halftones where the
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artifacts are near threshold.  For lower quality halftones, a
criterion based on visual scission may be more appropriate.
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