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ABSTRACT

Several image compression standards (JPEG, MPEG, H.261) are based on the Discrete Cosine Transform
(DCT). These standards do not specify the actual DCT quantization matrix. Ahumada & Peterson1 and Peterson,
Ahumada & Watson2 provide mathematical formulae to compute a perceptually lossless quantization matrix.
Here I show how to compute a matrix that is optimized for a particular image. The method treats each DCT
coefficient as an approximation to the local response of a visual "channel." For a given quantization matrix, the
DCT quantization errors are adjusted by contrast sensitivity, light adaptation, and contrast masking, and are
pooled non-linearly over the blocks of the image. This yields an 8x8 "perceptual error matrix." A second non-
linear pooling over the perceptual error matrix yields total perceptual error. With this model we may estimate the
quantization matrix for a particular image that yields minimum bit rate for a given total perceptual error, or
minimum perceptual error for a given bit rate. Custom matrices for a number of images show clear improvement
over image-independent matrices. Custom matrices are compatible with the JPEG standard, which requires
transmission of the quantization matrix.

1.  JPEG DCT QUANTIZATION

The JPEG image compression standard provides a mechanism by which images may be compressed and
shared among users 3, 4. I briefly review the quantization process within this standard. The image is first divided
into blocks of size {8,8}. Each block is transformed into its DCT, which we write cijk , where i,j indexes the DCT
frequency (or basis function), and k  indexes a block of the image. Though the blocks themselves form a two
dimensional array, for present purposes a one dimensional block index is sufficient. Each block is then quantized
by dividing it, coefficient by coefficient, by a quantization matrix (QM)  ijq , and rounding to the nearest integer

uijk = Round ijkc ijq[ ]     . (1)

The quantization error ijke  in the DCT domain is then

ijke = ijkc − ijku qij     . (2)

2.  IMAGE-INDEPENDENT PERCEPTUAL QUANTIZATION

The  JPEG QM is not defined by the standard, but is supplied by the user and stored or transmitted with the
compressed image. The principle that should guide the design of a JPEG QM is that it provide optimum visual
quality for a given bit rate. QM design thus depends upon the visibility of quantization errors at the various DCT
frequencies. In recent papers, Peterson et al. 5, 6 have provided measurements of threshold amplitudes for DCT
basis functions. For each frequency ij they measured psychophysically the smallest coefficient that yielded a
visible signal. Call this threshold tij . From Eqn.s (1) and (2) it is clear that the maximum possible quantization
error ijke  is ijq /2. Thus to ensure that all errors are invisible (below threshold), we set

qij = 2 tij     . (3)
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I call this the Image-Independent Perceptual approach (IIP). It is perceptual because it depends explicitly
upon detection thresholds for DCT basis functions, but is image-independent because a single matrix is computed
independent of any image. Ahumada et al. 1, 7  have extended the value of this approach by  measuring tij under
various conditions and by providing a formula that allows extrapolation to other display luminances (L) and pixel
sizes (px,py), as well as other display properties. For future reference, we write this formula in symbolic form as

tij = ap i, j, L, px, py,...[ ] (4)

3.  LIMITATIONS OF THE IIP APPROACH

While a great advance over the ad hoc  matrices that preceded it, the IIP approach has several shortcomings.
The fundamental drawback is that the matrix is computed independent of the image. This would not be a
problem if visual thresholds for artifacts were fixed and independent of the image upon which they are
superimposed, but this is not the case.

First, visual thresholds increase with background luminance. The formula of Ahumada & Peterson describes
the threshold for DCT basis functions as a function of a mean luminance. This would normally be taken as the
mean luminance of the display. But variations in local mean luminance within the image will in fact produce
substantial variations in DCT threshold. We call this luminance masking.

Second, threshold for a visual pattern is typically reduced in the presence of other patterns, particularly those
of similar spatial frequency and orientation, a phenomenon usually called contrast masking. This means that
threshold error in a particular DCT coefficient in a particular block of the image will be a function of the value of
that coefficient in the original image.

Third, the IIP approach ensures that any single error is below threshold. But in a typical image there are
many errors, of varying magnitudes. The visibility of this error ensemble is not generally equal to the visibility of
the largest error, but reflects a pooling of errors, over both frequencies and blocks of the image. I call this error
pooling.

Fourth, when all errors are kept below a perceptual threshold a certain bit rate will result. The IIP method
gives no guidance on what to do when a lower bit rate is desired. The ad hoc "quality factors" employed in some
JPEG implementations, which usually do no more than multiply the quantization matrix by a scalar, will allow an
arbitrary bit rate, but do not guarantee (or even suggest) optimum quality at that bit rate. I call this the problem of
selectable quality.

Here I present a general method of designing a custom quantization matrix tailored to a particular image.
This image-dependent perceptual  (IDP) method incorporates solutions to each of the problems described above:
luminance masking, contrast masking, error pooling, and selectable quality. The strategy is to develop a very
simple model of perceptual error, based upon DCT coefficients, and to iteratively estimate the quantization
matrix which yields a designated perceptual error.

4.  LUMINANCE MASKING

Detection threshold for a luminance pattern typically depends upon the mean luminance of the local image
region: the brighter the background, the higher the luminance threshold 8, 9. This is usually called "light
adaptation," but here we call it "luminance masking" to emphasize the similarity to contrast masking, discussed in
the next section.

To illustrate this effect, the solid lines in Fig. 1 plot values of the formula for tij  provided by Ahumada and
Peterson1 as a function of the mean luminance of the block, assuming that the maximum display luminance is 100
cd m-2 and that the greyscale resolution is 8 bits. The three curves are for five representative frequencies.  These
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curves illustrate that variations by as much as 0.5 log unit in tij might be expected to occur within an image, due to
variations in the mean luminance of the block.

Figure 1. Log of tij  as a function of luminance L of the block. From the top, the curves are for frequencies of {7,7},
{0,7}, {0,0}, {0,3}, and {0,1}. The maximum display luminance is assumed to be 100 cd m-2. The dashed
curves are the power function approximation described in the text.

The effect of mean luminance upon the DCT thresholds is complex, involving both vertical and horizontal
shifts of the contrast sensitivity function. We can compute a luminance-masked threshold matrix for each block in
either of two ways. The first is to make use of a formula such as that supplied by Ahumada and Peterson 1 ,

tijk = ap[i, j, L0 c00k c 00 ] (5)

where c00 k is the DC coefficient of the DCT for block k., L0  is the mean luminance of the display, and c 00  is the DC
coefficient corresponding to L0  (1024 for an 8 bit image). This solution is as complete and accurate as the
underlying formula, but may be rather expensive to compute. For example, in the Mathematica language, using a
compiled function, and running on a SUN Sparc 2, it takes about 1 second per block.

A second, simpler solution is to approximate the dependence of tij upon c00 k  with a power function:

tijk = tij c00k c 00( ) Ta     . (6)

The initial calculation of tij should be made assuming a display luminance of L0      The parameter aT  takes its
name from the corresponding parameter in the formula of Ahumada and Peterson, wherein they suggest a value
of 0.649. Note that luminance masking may be suppressed by setting aT =0. More generally, aT controls the
degree to which this masking occurs. Note also that the power function makes it easy to incorporate a non-unity
display Gamma, by multiplying aT  by the Gamma exponent (see Section 10.2).
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As illustrated by the dashed lines in Fig. 1,  this power function approximation is accurate over an upper
range of luminances (for the parameters in Fig. 1, above about 10 cd m-2). Except for very dark sections of an
image, this range should be adequate. The discrepancy is also greatest at the lowest frequencies, especially the DC
term. This could be corrected by adopting a matrix of exponents, one for each frequency. But note that the
discrepancy is a conservative one, that is the threshold changes less with block luminance than the model calls
for. This may not be a bad thing, especially at DC, where the validity of the model may be least.

5.  CONTRAST MASKING

Contrast masking refers to the reduction in the visibility of one image component by the presence of another.
This masking is strongest when both components are of the same spatial frequency, orientation, and location.
Here we consider only masking within a block and a particular DCT coefficient (It is possible to extend these
ideas to masking between DCT coefficients, and across DCT blocks). We employ a model of visual masking that
has been widely used in vision models, based on seminal work by Legge and Foley 10, 11. Given a DCT coefficient
cijk  and a corresponding absolute threshold tijk  our masking rule states that the masked threshold mijk will be

mijk =  Max tijk ,
wijcijk

1-wijtijk   
 

 
 

(7)

where wij  is an exponent that lies between 0 and 1. Because the exponent may differ for each frequency, we
allow a matrix of exponents equal in size to the DCT. Note that when wij  =0, no masking occurs, and the
threshold is constant at tijk . When wij  = 1,  we have what is usually called "Weber Law" behavior, and threshold
is constant  in log or percentage terms (for cijk >tijk ). The function is pictured for a typical empirical value of wij =
0.7 in Fig. 2.

mijk

cijk

Figure 2. Contrast masking function, describing the masked threshold mijk  as a function of DCT coefficient cijk  ,
for  parameters wij =0.7, tijk  = 2.

Because the effect of the DC coefficient upon thresholds has already been expressed by luminance masking,
we specifically exclude the DC term from the contrast masking, by setting the value of w00 = 0 . It is interesting
that while contrast masking is assumed to be independent from coefficient to coefficient (frequency to frequency),
in the case of luminance masking the DC frequency affects all  other frequencies.

Figure 3 shows the masked sensitivity ( ijk
−1m ) for the Lena image. Note that the dark strip in the upper right

results in generally higher sensitivity due to luminance masking (un-masking, perhaps we should say).
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Figure 3. The Lena image and its masked sensitivity DCT ( ijk
−1m ) for wij =0.7 and aT =0.649. If wij =0 and aT =0, all

cells would be identical and would look like the inset (2 tij ).

6.  PERCEPTUAL ERROR AND JUST-NOTICEABLE-DIFFERENCES

In vision science, we often express the magnitude of a signal in multiples of the threshold for that signal.
These threshold units are often called "just-noticeable differences," or jnd's. Having computed a masked threshold
mijk , the error DCT may therefore be expressed in jnd's as

dijk = eijk / mijk (8)

Each value of dijk  is an error in a particular frequency and block, expressed as a proportion of the just-
detectable error in that frequency and block. Thus all the errors are now in the "common coin" of perceptual error,
the jnd.

7.  SPATIAL ERROR POOLING

To pool the errors in the jnd DCT we employ another standard feature of current vision models: the so-called
β-norm (or Minkowski metric). It often arises from an attempt to combine the separate probabilities that
individual errors will be seen, in the scheme known as "probability summation"   12, 13, 14 . We pool the jnds for a
particular frequency {i,j} over all blocks k as

ijp =

1 βs
β s

ijkd
k
∑
 

 
 

 

 
 (9)

Different values of the exponent βs  implement different types or degrees of pooling. When βs =1, the
pooling is linear summation of absolute values. When βs =2, the errors combine quadratically, in an RMS or
standard deviation type measure. When βs =∞ (in practice, a large number such as 100 will do), the pooling rule
becomes a maximum-of operation: only the largest error matters. In psychophysical experiments that examine
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summation among sinusoidal components of differing frequency, a βs  of about 4 has been observed 15, 16, 17.
The exponent βs is given here as a scalar, but may  be made a matrix equal in size to the QM to allow differing
pooling behavior for different DCT frequencies. This matrix  ijp  of "pooled jnds" is now a simple measure of the
visibility of artifacts within each of the frequency bands defined by the DCT basis functions. I call it the
"perceptual error matrix."

8.  FREQUENCY ERROR POOLING

This perceptual error matrix ijp  may itself be of value in revealing the frequencies that result in the greatest
pooled error for a particular image and quantization matrix. But to optimize the matrix we would like a single-
valued perceptual error metric. We obtain this by combining the elements in the perceptual error matrix, using a
Minkowski metric with a possibly different exponent , β f

P =

1 β f

β fijp
ij
∑
 

 
 

 

 
    . (10)

 It is now straightforward, at least conceptually, to optimize the quantization matrix to obtain minimum bit-
rate for a given P, or minimum P for a given bit rate. In practice, however, a solution may be difficult to compute.
But if  β f =∞ , then P is given by the maximum of the ijp . Under this condition minimum bit-rate for a given
P=ψ  is achieved when all ijp =ψ . Intuitively, if the maximum of the ijp equals ψ , each of the others might as
well be increased to ψ , since that will not increase P, but will decrease bit-rate.

Recall that each entry in the matrix ijp  corresponds (at least monotonically) with the visibility of a particular
class of artifact: that of the corresponding  frequency (basis function).  This strategy of equating all ijp to ψ thus
also has the effect of equating the visibilities of each of these classes of error.

While it is likely that the true value of β f  is nearer to βs  (approximately 4), it also seems likely that this
more accurate value  will not greatly alter the outcome of the optimization and will not be worth the substantial
increase in computational effort.

8.  OPTIMIZATION METHOD

Under the assumption β f =∞ , the joint optimization of the quantization matrix reduces to the vastly simpler
separate optimization of the individual elements of the matrix. Each entry of the perceptual error matrix ijp  may
be considered an independent function of the corresponding entry ijq  of the quantization matrix

ijp = f ij ijq( )  . (11)

This function is monotonically increasing and

ijf 1( ) = 0     ∀  i, j  . (12)

We seek a particular ijˆ q  such that

ijf ijˆ q ( ) = ψ     ∀  i, j   . (13)

Of course, in some cases no amount of quantization will yield a value as large as the target ψ (for example, if
all coefficients are quantized to 0, but the error remains below ψ ). For those cases we are content to set ijˆ q to an
arbitrary maximum, such as 255 (the largest quantization table entry permitted in the JPEG baseline standard).

Watson 6 Proceedings SPIE 1913-14



In a practical implementation, a rapid method of estimating ijˆ q  is required. Here we have used a bisection
method that, while slow, is guaranteed to find a solution. A range is established for ijq  between lower and upper
bounds of  qij

<
and qij

> (typically {1,255}). ijp is evaluated at the midpoint of the range,

ijq = Round 1
2 ijq

< +
ijq

> 

 
  

 

 

  
 

  
  . (14)

If ijp < ψ , then qij
<

= ijq , otherwise, qij
> = ijq . This procedure is repeated until ijq  no longer changes. As a

practical matter, since QM's in baseline JPEG are eight bit integers, this degree of accuracy is obtained in n=9
iterations from a starting range of 255 .

In the following examples, unless otherwise stated, the parameter values used were aT  = 0.649, β  = 4, wij =
0.7 , display mean luminance L0= 65 cd m-2 , image greylevels = 256, c 00  = 1024. The viewing distance was
assumed to yeild 32 pixels/degree. For a 256 by 256 pixel image, this corresponds to a viewing distance if 7.115
picture heights. The "JPEG bit rate" is calculated by computing the code size for AC and DC coefficients using the
default JPEG Huffman tables. It does not include the overhead composed of quantization tables, Huffman tables,
marker codes, etc. because this overhead is not image dependent and depends on coding decisions made by the
application (e.g. use of restart intervals). If it had been included it would increase the bit rate for a 256 by 256
image by about 0.038 bits/pixel.

Several steps in the iterative estimation of ijˆ q  are illustrated in Fig. 4.  Successive steps show further
refinement in ijˆ q , and a progressively more uniform matrix ijp . On step 1, ijq = 255 , ∀  i, j . On this step the
perceptual error matrix shows greatest error at low spatial frequencies.
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Figure 4. Iterative estimation of the custom quantization matrix ijˆ q . The three panels in each row show
quantization matrix ijq , the reconstructed image using ijq , and the perceptual error matrix ijp . The
labels indicate the iteration trial, the current JPEG bit-rate, and the maximum difference between ijp  and
ψ  (discounting those for which the maximum error is always less than ψ ). The image was {64,64}, target
ψ was 1. For ijq  and  ijp , the DC coefficient is at the lower left corner.

Figure 5 shows the Lena image 18 compressed to various values of perceptual error ψ  = {1, 2, 4, 8}. The
value of ψ =1 produces an essentially "perceptually lossless" compression 19 under the prescribed viewing
conditions (mean luminance = 65 cd m-2, 32 pixels/deg.
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Figure 5. The Lena image compressed using custom matrices designed for perceptual error levels (ψ ) of 1, 2, 4,
and 8. Corresponding bit rates were 2.28, 1.47, 0.72, 0.24. The original image had dimensions of {256,256}.

It is interesting to compare the image-independent quantization matrix to the custom matrix for various
quality levels. This is shown in Table 1, where we give the ratio of image-dependent and independent matrices,
for two quality levels of 1 and 4. Elements that have been set to the maximum of 255 are indicated by zeros. Note
that image dependence does alter the structure of the matrix, and that changes in quality (as defined here) do not
yield a constant scaling of the basic matrix.
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0.156 0.231 0.193 0.208 0.192 0.165 0.172 0.161
0.231 0.223 0.208 0.179 0.182 0.167 0.146 0.155
0.193 0.208 0.166 0.174 0.171 0.157 0.156 0.171
0.162 0.179 0.174 0.165 0.154 0.158 0.166 0.194
0.157 0.141 0.171 0.154 0.156 0.166 0.164 0.243
0.165 0.167 0.157 0.158 0.195 0.208 0.226 0.289
0.172 0.168 0.156 0.181 0.198 0.235 0.317
0.187 0.171 0.158 0.217 0.251

0.615 1.41  1.24 1.13 1.07 1.46
1.1 1.11 1.28 1.04 1.15 1.38 3.28
1.07 1.1  1.11 1.22 1.28 1.55
1.04 1.1 1.26 1.25 1.72
1.55  1.39 1.69 2.05

Table 1. Ratio of image-dependent and independent quantization matrices for the Lena image at quality levels of
1 (top) and 4 (bottom). This ratio is equal to ijˆ q 2tij  . Empty cells indicate that the image-dependent
matrix had a value of 255 (the maximum allowed).

9.  OPTIMIZING QM FOR A GIVEN BIT-RATE

It is of interest to relate the JPEG bit-rate to the perceptual error level ψ . This is shown for the Lena and
Mandrill images in Fig. 6. This is a sort of inverse "rate-distortion" function. Note that useful bit-rates below 2
bits/pixel yield perceptual errors above about 2.

Figure 6.  JPEG bit-rate versus perceptual error ψ  for the Lena (lower curve) and Mandrill  (upper curve) images.
The lines are second order polynomial interpolations.
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The method described above yields a QM with a specified perceptual errorψ . However, one may  desire a
QM that yields a given bit rate 0h  with minimum perceptual error ψ . This can be done iteratively by noting that
the bit rate is a decreasing function of ψ , as shown in Fig. 6. In our current implementation, we use a second
order interpolating polynomial fit to all previous estimated values of {h ,ψ } to estimate the next candidate ψ ,
terminating when h − 0h < ∆h , where ∆h  is the desired accuracy in bit-rate. On each iteration, a complete
estimation of ijˆ q  is performed. There are no doubt more rapid methods.

The most meaningful contest between IDP and IIP approaches is to compare  images compressed by the two
methods to a constant bit rate. Furthermore, the bit rate must be low enough that the poorer method shows
visible artifacts, else both will appear perfect. Figures 7 and 8  provide such comparisons. The IDP method is
visibly superior, even in relatively low-quality printed renditions.

Figure 7.  IIP (left) and IDP (right) compressions at 0.25 bits/pixel (top row) and 0.5 bits/pixel (bottom row).
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Figure 8.  IIP (left) and IDP (right) compressions at 0.25 bits/pixel (top row) and 0.5 bits/pixel (bottom row).

10.  EXTENSIONS AND FUTURE RESEARCH

10.1  Estimation of  tij  wij , βs , aT

The method described here depends upon estimates of the matrices tij and wij , and the parameters βs  and
aT . Estimates of tij may be obtained directly from psychophysical experiments that measure detection thresholds
for individual DCT basis functions 1, 5, 6. We are devising experiments, adapted from the methods of Legge and
Foley 10, 11 to directly estimate wij . In these experiments detection thresholds are measured for an increment (or
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decrement) in the amplitude of a DCT basis function. Estimation of βs is more difficult. Several values of βs in
the range of 1-100 could be evaluated for the degree to which they yield a plausible perceptual error metric ijp . In
addition, a matrix of values of βs  might be warranted, with different degrees of spatial pooling at each DCT
frequency.

10.2  Gamma Functions

Remarkably, the JPEG specification makes no statement regarding the relation between pixel values and
displayed luminance. While one can understand their reluctance to impose constraints upon JPEG applications, it
should be understood that ultimate visual quality depend on this relation. The "de facto" assumption appears to
be that pixel values will be applied directly to the display subsystem, which typically has a non-linear relation
between greylevel and luminance, often known as a "gamma function" that is approximately a power function
with an exponent (gamma) of about 2.3. The assumption presumably also is that variations in this function from
system to system are not so great as to seriously degrade visual quality.

In an ideal system, one would specify both the gamma function of image capture, and of the target display.
Image data would be transformed to luminance before compression, and after reconstruction, to values that
would result in luminance on the display. Unfortunately, we cannot add descriptors of these gamma functions to
the existing JPEG specification, so we must be content with the "de facto" assumption.

Since the preceding calculations have treated pixel values as proportional to luminance (gamma=1), under
the "de facto" assumption, we should subject the image data to inverse and forward gamma transformations
before coding and after decoding, respectively. The present approach, which does no such transformations, relies
on the approximate linearity of the gamma function near the middle of its range, and on the inclusion of the
display gamma into the luminance masking function as discussed in Section 4. This subject will be examined in
future research.

10.3  Color Images

The Image-Dependent Perceptual approach has been described here only with respect to coding of
monochrome images. The principles, however, are easily extended to color images. The simplest approach is to
measure or compute a unique tij for each of the three color channels7, and from them compute three custom
quantization matrices. The matter may be complicated by  different masking and pooling properties in the
chromatic channels than in the luminance channel. But since color consumes so small a part of the total bit-rate,
these details are not likely to be critical in practical applications.

11.  SUMMARY

I have shown how to compute a visually optimal quantization matrix for a given image. These image-
dependent quantization matrices produce better results than image independent matrices. The algorithm can be
easily incorporated into JPEG compliant applications.

In a practical sense, the IDP method proposed here solves two problems. The first is to provide maximum
visual quality for a given bit rate. The second problem  it solves is to provide the user with a sensible and
meaningful quality scale for JPEG compression. Without such a scale, each image must be repeatedly compressed,
reconstructed, and evaluated by eye to find the desired level of visual quality.

However, at present, it is admittedly only a conjecture that this scale relates in a direct way to perceived
visual quality. While I am confident that it relates more directly to quality than does the ad hoc "quality factor" of
some JPEG implementations, to demonstrate a robust relation between computed perceptual error and perceived
quality will require subjective judgments, both over different bit rates and different images.
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From the standpoint of computational complexity, this algorithm adds only a modest amount to the cost of
JPEG image compression. All optimization takes place in the DCT domain, so no additional forward or inverse
DCT's are required. The DCT mask is computed only once, and consists of a few calculations on each DCT pixel.
The estimation of the quantization matrix requires a maximum of ten (and probably many fewer) iterations, each
of which consists of a modest number of simple operations on each DCT pixel. It is certainly a smaller burden
than requiring the user to repeatedly compress, reconstruct, and visually assess the result.

12.  NOTATION
cijk DCT of an image

ijq quantization matrix
ijku quantized DCT
ijke DCT error

tij DCT threshold matrix (based on global mean luminance)
ap[i, j, L, px, py,...] threshold formula of Ahumada and Peterson1
tijk DCT threshold matrix (based on local mean luminance c00 k )
aT luminance masking exponent
wij contrast masking exponent (Weber exponent)
mijk mask DCT
dijk jnd DCT

ijp perceptual error matrix
βs spatial error-pooling exponent
P total perceptual error
β f frequency error-pooling exponent
c00 k DC coefficient in block k
L0 mean luminance of the display
c 00 Average DC coefficient, corresponding to L0  (typically 1024)
ψ target total perceptual error value

ijˆ q estimated quantization matrix yielding target perceptual error
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