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Abstract— In this study we investigated how variables in the 
aviation domain impact adherence levels of aircraft flying area 
navigation arrivals with optimized profile descents (RNAV 
OPDs). Variables categories were: weather, aircraft, procedure, 
and traffic. Non-adherence events analyzed were: miss above, 
miss below, skip before merge, and skip after merge. Miss below 
and miss above describe when a flight does not comply vertically 
with a procedure. Skips refer to a flight leaving a procedure, then 
returning. Findings of this work reveal that vertical events are 
most impacted by altitude restriction size, steepness of flight 
paths, and merging routes. Lateral events were impacted by 
merging routes, number of speed restrictions, and the flow rate 
of the arrival traffic. This study helps increase understanding of 
how the system is functioning and identifies where procedures 
are not flexible enough to handle the variability in normal 
operations. 

Keywords—RNAV, Data Mining, Decision Trees, RADI, 
Adherence 

I. INTRODUCTION  
The benefits of using continuous descent arrivals have been 

quantified in terms of fuel and noise, so why is full adherence 
around ten percent? Pre-planned flight paths, known as 
procedures, aim to alleviate some of the need for air traffic 
control (ATC) intervention and allow aircraft to self-regulate. 
Specifically, this is the case for standard terminal arrival routes 
with optimized profile descents (OPD STARs). These 
procedures provide a vertical, lateral, and typically a speed 
profile for the aircraft to follow. Expectations for utilizing 
profiles as designed are: reduced ATC communications, 
reduced fuel consumption, reduced noise, and increased 
predictability of aircraft trajectories [1]. However, for this idea 
to work, the procedure’s design must encompass enough of the 
variability in the operational domain (e.g., weather, aircraft 
differences, and traffic volume) to afford the aircraft the 
opportunity to stay within the design boundaries of the 
procedure in an uninterrupted manner. When variables in the 
domain preclude using the intended procedural flight path 

(non-adherence), alternative ATC instructions must be 
implemented for the aircraft to remain clear of terrain and 
traffic. The reasons for this might be pilot initiated, controller 
initiated, human error, or a combination of these. Ultimately, 
the responsibility is left to ATC for assuring separation, then 
pilots for adapting appropriately to the new instructions.  

Our goals for this research were to identify and quantify 
some of the variables in the domain that contribute to the non-
adherence of aircraft flying OPD STARs. Understanding this 
topic first requires an operational definition of adherence, 
rationale for the types of variables we included in our analyses, 
events we measured to describe types of aircraft non-
adherence, and how procedures have changed flight path 
management. First, as defined in Advisory Circular 90-100A 
adhering to a procedure is flying one mile either side of 
centerline and within 300 feet above or below an altitude 
restriction. The 300 feet rule is an industry standard. These 
criteria represent aircraft navigation equipment performance 
requirements and pilot precision requirements, respectively [2]. 
Second, we wanted to capture variables that are out of the 
control of the users (pilots and controllers) and quantifiable. 
This was intended to objectively describe the impact of the 
design and its interaction with the environment to the extent 
possible. After reviewing literature, Aviation Safety Reporting 
System (ASRS) reports, and subject matter expert knowledge, 
the measurable variables were broken into four categories: 
weather, procedure, aircraft, and traffic. This taxonomy can be 
amended in the future; we aimed to be as comprehensive as 
possible. Third, events used to quantify non-adherence were 
broken into two categories: vertical and lateral. The vertical 
events were defined as flying below (miss below) or above 
(miss above) a waypoint restriction altitude by more than 300 
feet. Lateral events were defined as leaving the procedure by 
more than one mile and then returning, either before a merging 
waypoint (skip before merge) or after a merging waypoint (skip 
after merge) (See Figures 1 and 2.).   



 

 
We used the variables describing the operational domain 

and compared them to the non-adherence events to see if there 
was a relationship and a predictive capability in the variables. 
This information gave us a partial view of context (weather and 
traffic), procedure design characteristics, and aircraft type for 
their effect on adherence events. We accomplished this by 
using the RNAV Adherence Data Integration system (RADI).  
Historical radar track from Federal Aviaiton Administration 
(FAA) System Wide Information Management (SWIM) 
network, National Oceanagraphic Atmosphereic 

Administration (NOAA) wind, Corridor Integrated Weather 
System (CIWS),  and Coded Instrument Flight Procedure 
(CIFP) data are integrated in this system [3]. Lastly, the 
fundamentals of the descent phase of flight have not changed 
as a result of the OPD STAR, but the tasks of speed assignment 
and descending, once handled dynamically by ATC, are now 
transferred to a fixed procedure. This rigidity creates a 
mismatch between the realities of the domain and how 
procedures are designed. To date, procedures cannot adapt to 
real-time conditions, which renders them unusable at times 
when weather, traffic, and aircraft variables exceed their design 
scope. 

II. BACKGROUND 
To illustrate how often ATC and pilots are involved in 

amending procedures, we refer to our previous work on OPD 
STAR usage statistics [4]. Reviewing 24 of the United States’ 
most trafficked airports, median full compliance with the 
procedures’ vertical and lateral boundaries ranged from 0% to 
24%. This low usage and high variability shows something is 
inhibiting use as designed assuming that adherence is 
desirable. Analyses were accomplished by reviewing 
historical radar tracks overlaid onto OPD STAR lateral and 
vertical boundaries, then comparing the waypoint crossing 
altitude and position with those published STAR boundaries 
using derived variables from the data. One limitation of this 
study was that it was only capable of looking at waypoint 
adherence and wasn’t able to detect aircraft position between 
waypoints. Therefore, aircraft behavior between waypoints 
may have been missed and not included. In addition, the radar 
source was not capable of showing the landing runway of the 
aircraft, which made runway transition identification difficult 
in some cases. This may have artificially lowered some 
adherence rates. Further, some routes transitioned directly to 
instrument approaches before the end of the normal track, 
which may have inflated the number of aircraft that appeared 
to be leaving the procedure early, when they were actually 
transitioning to a different procedure for landing. However, to 
our knowledge, this was limited to Denver (KDEN) airport 
and to a subset of the aircraft capable of radial fix required 
navigation performance (RF) (RNP). If we added all of the 
ambiguous flights into the full compliance category, the 
results would have shown a similarly high rate of variability 
and still the majority of aircraft not fully complying with the 
procedures.  

The issue that flights will sometimes be forced to leave a 
procedure is not new. Human-in-the-loop simulations were 
conducted by Johnson, 2009 to identify issues that could limit 
the use the OPD STARs in Atlanta [5]. Heavy traffic flow was 
thought to be a contributor to flights being removed from 
OPDs. In addition, mixed aircraft, aircraft weight variability, 
merging, and initial spacing were thought to negatively 
interact with high levels of traffic. Mixed aircraft types, wind, 
and variable aircraft weight was noted because of their effects 
on descent path angles and where an aircraft needs to start its 
descent. As a result, controller transparency of where the 
aircraft will start descending is reduced and deceleration and 
spacing would be difficult to predict.  Merging transition 

Fig. 1 Diagram of Vertical Non-adherence Events. 

 

 
Fig. 2 Diagram of Lateral Non-adherence Events 



routes is problematic for spacing as it also requires a 
predictive element from a controller to fit two streams of 
traffic into one. Last, initial spacing of aircraft prior to the 
OPD must be sufficient to handle the effects of compression 
as the aircraft decelerate during descent. Further, the study 
reported that controllers thought the OPDs limited traffic flow 
below that of the airport’s capability. Therefore, the idea that a 
procedure (other than an instrument approach) may be 
throttling throughput was noted.     

Additional research by Mercer, Callantine, and Martin, 
2012 discussed several variables they believed to impact 
unencumbered use of OPD STARs [6]. Their study used go-
around scenarios, which require spacing changes in arrival 
flows to allow aircraft to reintegrate as they return to the 
landing airport. They wanted to identify recovery methods and 
determine if an automated decision support tool would be 
useful in the recovery process. Findings of this work show that 
automation may be necessary to assist controllers with the 
complex task of predicting future aircraft spacing. This work 
showed two things: OPD STARs are thought to be unusable in 
situations of improperly spaced traffic, and systematic 
recovery methods were explored to augment the procedures 
during known disruptions. However, there may be latent 
issues that contribute to non-adherence that were not 
addressed in this work (e.g., weather and human error). 

Recovering from a situation outside the procedure’s design 
scope contrasts from a design that is intended to be more 
usable. Early work on the human factors implications of 
Constant Descent Approaches (CDAs) (predecessors of OPD 
STARs) looked at how controllers might be influenced by the 
speed restrictions in the procedure [7]. They found that 
predicting an airplane’s future position with varied 
deceleration can contribute to projection error and that 
standardization of speed profiles could be beneficial as a 
compensatory method. This work highlights that predicting 
future aircraft location is important to controllers and design 
for this purpose could be beneficial. This was a motivating 
factor in why we chose variables related to merging time 
differences.  

Thunderstorms or convective weather poses risks to 
aircraft from turbulence, hail, lighting, and windshear [8]. 
Pilots deviate from planned routes to avoid these risks. 
Quantifying aircraft deviations from planned routes requires 
the position and intensity of the weather cell and aircraft 
position in the same temporal window. In addition, the 
location of the route is required for a comparison to the path 
being flown. 

In 2006, Phoenix (KPHX) airport’s procedures were 
investigated to gauge the effects of the implementation [9]. 
Dependent variables investigated were: descent continuity, 
fuel burn, mileage, and emissions. Emissions were measured 
in CO2 and calculated from estimates of fuel burn. Descent 
continuity was measured at two points on the arrival in 100 ft 
increments around 8000 ft and 9000 ft. The authors concluded 
that the arrivals increased the descent continuity, reduced fuel 
burn, and had no change in mileage. However, one condition 
was a subset of aircraft that flew the arrivals more precisely, 

which is inconsistent because this is not done for the baseline 
condition. It is likely there is also a subset of aircraft in the 
baseline condition that performed better than the average, but 
they are not revealed. Fuel savings analyses assumed that all 
of the traffic was in this same subset condition, but the days 
sampled showed many aircraft were off the route, which 
makes this assumption that all traffic would fly the route 
precisely to be unrealistic. Further, the authors noted that 
increases in vectoring might have resulted from the 
implementation. This study did not describe the variability in 
the data or statistical tests to determine if the differences could 
be attributed to chance. Overall, the authors stated that 
benefits were likely if the procedures were flown fully and 
consistently. 

Safety issues with RNAV STAR procedures have been 
recurring. Incidents raised by pilots and controllers led to the 
issuance of two safety enhancements (SEs) by the Commercial 
Aviation Safety Team (CAST): SE 213 and SE 214 [10,11]. 
SE 213 was intended to address pilot and controller 
procedures, and charting depiction for the purpose of error 
reduction. SE 214 was intended to address path compliance 
issues related to procedure design [7]. Efficacy of this work 
was measured by the occurrence rate of subjective reports 
(e.g., ASRS, ASAP, ATSAP). This poses a limitation and may 
not be an adequate indicator. ASRS reports do not represent 
actual rates of occurrence and may not faithfully represent 
categories of events [8]. Quantitative occurrence rates are 
needed to augment the subjective reports to understand the 
issues comprehensively. 

A. RADI System 
RADI is a continuation of our previous work to quantify 

RNAV STAR adherence [3]. However, it utilizes additional 
data sources, more precise radar, finer grained procedure 
descriptions, and additional derived variables. The following 
data sources were leveraged to capture the relevant 
information and address adherence variables (See Figure 5.): 

1) Aircraft Flight-track Data 
NASA’s Sherlock archive contains radar flight track data 
collected over the FAA’s System Wide Information 
Management (SWIM) data feed. The primary sources include: 
SWIM Flight Data Publication Service and SWIM Terminal 
Data Distribution System. The unique flight tracks are merged 
between the two sources to produce a unique trajectory 
capturing en route operations down through landing. The 
flight trajectories span 11/12/14 through 01/31/18. 

2) Wind Data 
The NOAA Rapid Refresh (RR) data contains estimated winds 
aloft at 13 KM resolution across a US map projection grid. 
The files were parsed over the same time frame to capture 
snapshots of winds and temperatures aloft above each 
destination airport. A subset of these measurements were 
gathered at 1,000 ft. intervals ranging from 4,000 - 40,000 ft. 
with a one hour sampling rate. 

3) Convective Weather Data 
The MIT Lincoln Labs Corridor Integrated Weather System 
(CIWS) data  were parsed over the same time frame to capture 
weather obstructions on the STAR. Since the weather cells 



were not expected to change very rapidly with respect to the 
flights, the files were sampled every five minutes. The data are 
projected using a US Lambert Azimuthal Equal-Area map 
projection grid. The data contains Vertical Integrated Liquid 
(VIL) and EchoTops for each grid point. The VIL and 
EchoTops are quantized in a lookup table to derive the 
weather avoidance field [12]. The Weather on compartment 
variable characterizes the probability of a flight avoiding the 
weather in the terminal airspace. Weather under 40% was 
excluded.  

4) Procedure Data  
STAR characteristic data are extracted from the Airspace Data 
File, which is provided by ATAC Corp. and is extracted from 
the coded instrument flight procedures every 56 days. This 
corresponds to 21 chart cycles for the time frame analyzed. 
Data include RNAV STAR waypoints (latitude/longitude), 
airspeed restrictions, altitude restrictions, and descent gradient 
(degrees) for each waypoint.  
 

 
B. Variables 

Variables were broken into four categories: procedure, 
weather, traffic, and aircraft. Due to scope restrictions, we did 
not include the analysis of each aircraft type. In addition, we 
could not detect the effects of speed restrictions on vertical 
profiles because we could not determine whether the airplane 
was adhering to the published speeds. We did not include 
speed variables in vertical assessments. Variables used in the 
analyses are listed in Table 1 and Figures 3 and 4. 

TABLE I.  VARIABLE LIST 

Categories Variables Units Definitions 

Weather 

Tailwind Knots 
Wind component for the 
direction of segment of 
STAR the aircraft is on 
at that altitude. 

Tailwind 
Differential Knots 

The difference in wind 
between two merging 
segments of a STAR. 

Weather on 
Compartment 

40-100% 

<40%=0 

Probability a flight will 
deviate convective 
weather at a given 
compartment at the time 
the flight passes. 

Categories Variables Units Definitions 

Distance to 
Weather 

Nautical 
Miles 

Distance from current 
position to weather 
covered segment 
downstream. 

Procedure 

Average Slope Degrees 
The high slope plus the 
low slope divided by 
two 

Distance to 
Previous 

Restriction 
Nautical 

Miles 

The distance looking 
back from a waypoint to 
the previous waypoint 
with a altitude 
restriction. 

Window Size Feet 
The size of an altitude 
restriction (ft) from the 
lower to upper limit. 

Waypoint % % 0-100 
Percent of waypoint 
position out of  total 
waypoints in STAR 
from start. 

Merge 
Waypoint 

Type 
Nominal 

A waypoint where two 
or more transitions 
converge. 0=no merge 
1=transitions, 2=STARs, 
3=transitions and 
STARs. 

Number of 
Speed 

Restrictions in 
Sub-route 

# of speed 
restrictions 

Count of speed 
restrictions from 
enroute transition to 
runway transition. 

Traffic 

STAR Flow # of 
Aircraft 

The count of aircraft at a 
given time that are 
currently on the STAR 
assigned to the aircraft 
in question. Also counts 
skipping aircraft that 
return to the route. 

Miles in Trail Nautical 
Miles 

The distance the 
preceding aircraft is in 
front of the aircraft in 
question. 

Merge Time 
Differential Seconds 

Absolute difference in 
projected time (Sec) two 
conflicting flights will 
be at a merge. 

 Regional 
Flight Boolean 

A flight that originated 
within the furthest 
enroute transition.  

Aircraft 

A319,A320, 
A321, A330, 
A340, A350, 
A380, B737, 
B747, B757, 
B767, B777, 
B787, CRJ2, 

CRJ7, 
CRJ9,DHC-8, 

EMB-135, 
EMB-145, 

EMB-170/5, 
EMB-190, 
MD10/11, 
MD80/90 

Nominal NA 

 

 
Fig. 5 System Diagram of RADI. 



 
C. Regulatory Guidance 

Navigation system requirement guidance is provided in 
Advisory Circular 90-100A. Lateral navigation requirements 
are specified in miles from track centerline for a given amount 
of operational time. For RNAV 1, the system is required to be 
within one mile of track centerline 95% of the time. Vertical 
navigation requirements are not specified for RNAV 1 capable 
systems [2].  

Guidance for procedure design exists in documents 
provided by the FAA. These FAA Orders are: 8260.19G, 
8260.3C, and 8260.58A [13,14,15]. Lateral design standards 
specify waypoint spacing and type, turn angles, wind impact, 

and other details to ensure aircraft adherence to the procedural 
track. Given that there is a performance requirement (RNP) 
for lateral navigation, we were not focused on investigating 
those criteria. Vertical profiles have maximum descent 
gradient requirements between waypoints based on altitude 
and speed restrictions. Restrictions above 10,000ft are limited 
to 3.11°, and below 10,000ft to 3°. However, if there is a 
speed restriction that is less than 220 Knots (below 10,000), 
the maximum gradient is 2.36° both before and after the 
waypoint restriction. The guidance specifies a reduced descent 
gradient for reductions in airspeed, but does not provide the 
method by which it was calculated. One explanation is a 
reduction in drag at lower airspeeds from the reduction in 
dynamic pressure. 

These variables illustrate that descending to a target 
altitude is regulated by aircraft performance limitations. 
Aircraft are limited by a maximum descent rate to still abide 
by a speed restriction. Thus, the speed restrictions and altitude 
restrictions are yoked. If either the descent gradient is too 
steep for the airplane to decelerate, the speed or altitude 
restriction must be prioritized over the other. Conversely, if 
the speed restriction were too slow, the aircraft might not be 
able to descend at the required rate to make the altitude. For 
example, if the altitude were given priority, increasing 
airspeed would increase the descent rate (i.e., dive to altitude); 
speed restriction priority would result in a reduced descent 
rate for a reduced speed (i.e., flatten-out to slow). In addition, 
controller intervention such as changing airspeed, vectoring, 
and changing altitude restrictions renders design standards 
ineffective since the interventions would not conform to the 
standards. 

General principles for design guidance encourage using 
the fewest number of waypoints and waypoint restrictions to 
define a trajectory. Further, the guidance asks designers to 
consider the interaction effects of multiple restrictions in 
succession [13]. Human performance decrements from 
charting clutter resulting from navigation procedure 
complexity were identified by Chandra and Grayhem, 2013. 
Users’ speed in retrieving data from charts was reduced as the 
amount of data increased [16]. Possible motivations for this 
guidance are to reduce complexity to enhance human 
performance, and mitigating unwanted aircraft performance 
from problematic restriction interactions. However, the 
specific negative interactions from speed and altitude 
restrictions are not listed. 

D. Purpose 
The purpose of this study was to identify the influence of 

variables outside the users’ (pilots and controllers) control on 
specific types of non-adherence. By identifying these variables 
and their respective impacts, we aimed to provide empirical 
evidence that they contribute to differing rates of adherence. 
Further, we wanted to quantify the specific levels and 
combinations of variables that influence non-adherence to aid 
in design criteria.  Ultimately, increasing system resilience is 
the motivating goal. It is a key point that we used historical 
data of real operations and analyzed flight performance. We 
did this to encompass the complexity of the domain.  

 
Fig. 3 Diagram of Vertical Factors. 

 
Fig. 4 Diagram of Lateral Variables.  



The secondary purpose of this study was to introduce this 
analysis method as a way to measure the impact of designs 
and design changes (i.e., create a dependent variable set). The 
RADI system serves that function and acts as instrumentation 
for how procedures are being flown; system health cannot be 
measured without instrumentation. 

III. METHOD 

A. Materials 
All data files were produced by the RADI system. Tableau 

software was used to identify trends, test variables, and test 
data integrity. We used Python language scikit-learn package 
to build decision tree models and Pandas package to load CSV 
data files. 

B. Dataset 
We analyzed 32 airports in the United States that contain 

276 RNAV STARs with vertical profiles. Data collection 
ranged from November, 2014 to January, 2018. Atlanta 
(KATL) was excluded from the vertical analysis because its 
RNAV STARs vertical profiles were not being used due to 
safety issues during a section of time. “Flights” are counts of 
aircraft arriving, flights can contain multiple events. These are 
the behaviors of interest and are measurable descriptions of 
non-adherence (See Figs 1 and 2). The dataset contained 
12,762,967 flights, of which, 10,619,068 flew some portion of 
a STAR. This subset contained 2,257,000 misses below, 
952,585 misses above, 3,365,889 skips before merge, and 
868,696 skips after merge. In addition, 1,314,306 flights 
complied fully vertically and laterally to the STAR. 

C. Design 
This study used a supervised predictive machine learning 

design to retrospectively analyze historical flight data. 
Decision tree classification was used to predict four 
dichotomous dependent variables (events). These were: miss 
above, miss below, skip before merge, and skip after merge. 
For each event of interest, the data were first filtered based on 
the specific criteria describing the event, then a separate 
dataset was created. Using these data, a decision tree was 
built. Each event was tested at one level (all STARs at all 
airports). This was intended to gauge the generalizability of 
the variables and how they influence the entire system.  
Hyper-parameters of a decision tree model include maximum 
depth of tree, minimum samples required to make a split, 
minimum samples to be present at a leaf node, maximum 
number of leaf nodes, and minimum impurity decrease 
required to make a split. 

D. Model Specifications 
Each test was made independently and was trained, tested, 

and validated with 60%, 20%, and 20% of the data for the 
specific case, respectively. To identify the best hyper-
parameters of the model, a five-fold cross-validation was used. 
First, the training data were split into five sets, then trained on 
four sets and evaluated on the fifth. This was repeated five 
times with each set being the evaluation set. Then, average 
(area under curve) AUC was measured. The five-fold cross-

validation was repeated on several combinations of hyper-
parameter values and the average AUC was recorded. The best 
hyper-parameter for the model was the one that has the 
maximum average AUC on the five-fold cross-validation 
experiment. The purpose of this validation step was to test the 
effects of different split thresholds to maximize the true 
positive rates (TPR), and true negative rates (TNR). A final 
model was trained using the best hyper-parameters and was 
used as the prediction model. Class imbalance was handled by 
weighing the minority class to equal the majority. Last, the top 
three event and non-event rules with the smallest GINI 
impurity were reported. Event probability was calculated for 
each rule based on its leaf node’s GINI impurity translated to 
rate of occurrence.    

E. Test Specifications 
We chose a cutoff of 60% prediction accuracy for 

reporting results of the decision trees. 
 
1) Miss above and below: 

 
In order to gauge vertical misses faithfully, waypoints 

without vertical restrictions were filtered. Flights that skipped 
the waypoint in question laterally were not assessed vertically. 
However, if the flight returned to the lateral path, it was 
vertically assessed for those waypoints flown. Thus, flights 
could have multiple vertical events in the same flight and also 
be laterally non-adherent for part of the flight. 
 
Variables Used:  

Average slope, distance to previous restriction, altitude 
window size, tailwind, merge waypoint type, and waypoint 
percentage.  

 
2) Skip before and after merge: 

 
Variables were first filtered to remove all of the skips that 

happened after a merge waypoint. We then identified the five 
compartments (ten miles) before the skip occurred and 
recorded the variables of interest for the flight in each 
compartment. These five compartments were considered the 
event. We assumed the variables within those compartments 
would be sufficiently stable and unchanged before the aircraft 
left the lateral path. We then compared compartments that did 
not have a skip and used those as the non-event comparisons.  

Skips after merge waypoints used a filter to remove the 
events before a merge waypoint. In addition, all variables 
related to differentials were not applicable to that test since 
they only exist before routes merge. 

 
Variables Used: 

Merge time differential, Tailwind differential, STAR flow, 
Number of speed restrictions, Miles in trail, and Weather on 
compartment, regional flight, and waypoint Percent. 

 
 
 



IV. RESULTS 

A. Miss Above 
The decision tree correctly predicted 65% of the miss 

above events and 74% of the non-event adhering flights; total 
accuracy was 70%. The base occurrence rate was 2.7%. Hyper 
parameters and training accuracy are listed in Table II. The 
three rules predicting the highest probabilities of the event 
(i.e., event class) and lowest probability of event (i.e. 
adherence class) are listed in Tables III and IV.  

TABLE II.  MISS ABOVE MODEL SETTING AND PEFORMANCE 

Hyper-parameters 
TPR 

Train/Test 
Difference 

TNR 
Train/Test 
Difference 

Max depth = 11 
Max leaf nodes = 25 
Min impurity decrease = 0.0001 
Min samples leaf = 1000 
Min samples split = 4000 

0.00123 -0.00024 

TABLE III.  TOP THREE LEAF NODES FOR MISS ABOVE CLASS 

Rank Event 
Probability Rule 

1 42% Not merge 3 & window size=1000 & Average 
slope >.1º 

2 29% Merge 3 & window size < 2500 & distance to 
previous restriction > 18 NM 

3 17% Window Size=0 & Average slope >2.9º 

TABLE IV.  TOP THREE LEAF NODES FOR ADHERENT CLASS 

Rank Event 
Probability Rule 

1 0.3% 
Not merge 3 & window size > 1500 & Average 

slope < .1º 

2 0.5% 
Not merge 3 & window size > 4500 & Average 

slope > .1º 

3 0.5% 
merge 3 & window size > 2500 & distance to 

Average slope < 3.1º 

Miss Below 
The decision tree correctly predicted 70% of the miss 

below events and 73% of the non-event adhering flights; total 
accuracy was 72%. The base occurrence rate was 4.4%. Hyper 
parameters and training accuracy are listed in Table V. The 
three rules predicting the highest probabilities of the event and 
lowest probability of event are listed in Tables VI and VII.  

TABLE V.  MISS BELOW MODEL SETTING AND PEFORMANCE 

Hyper-parameters 
TPR 

Train/Test 
Difference 

TNR 
Train/Test 
Difference 

Max depth = 20 
Max leaf nodes = 25 
Min impurity decrease = 0.001 
Min samples leaf = 1000 
Min samples split = 2000 

0.0013 -0.0002 

 

 

 

TABLE VI.  TOP THREE LEAF NODES FOR MISS BELOW CLASS  

Rank Event 
Probability Rule 

1 37% 
Window Size=0 & Average slope >.8º & 
waypoint % < 97 & distance to previous 

restriction < 11.6 NM 

2 31% 
Window Size =0 & Average slope <.8º & 
waypoint % < 97 & distance to previous 

restriction < 10.2 NM 

3 26% Window Size =0 & waypoint % > 97 & distance 
to previous restriction <5.7 NM 

 

TABLE VII.  TOP THREE LEAF NODES FOR ADHERENT CLASS 

Rank Event 
Probability Rule 

1 0.7% 
Window Size >3500 & Average slope > 1.9º & 

miles in trail  > 5 NM 

2 0.9% 

Window Size 1000-3500 & Average slope      
>.44º & miles in trail  > 5 NM distance to 

previous restriction 4.7-10.2 NM & waypoint % 
52-96 

3 1.2% 
Window Size=0 & waypoint % > 97 & distance to 

previous restriction 5.7-5.9 NM 

 

B. Skip Before Merge 
The decision tree correctly predicted 62% of the skip 

before merge events and 57% of the non-event adhering 
flights; total accuracy was 60%. The base occurrence rate was 
3.3%. Hyper parameters and training accuracy are listed in 
Table VIII. We included the top three rules for the event class 
listen in Table IX, but not the adhering class as it performed 
below 60%.  

TABLE VIII.  SKIP BEFORE MERGE  MODEL SETTING AND PEFORMANCE 

Hyper-parameters 
TPR 

Train/Test 
Difference 

TNR 
Train/Test 
Difference 

Max depth = 15 
Max leaf nodes = 25 
Min impurity decrease = 0.0001 
Min samples leaf = 7000 
Min samples split = 3500 

 
 

-0.0003 

 
 

1.08e-5 

TABLE IX.  TOP THREE LEAF NODES FOR SKIP BEFORE MERGE  CLASS  

Rank Event 
Probability Rule 

1 8.7% 
Number of speed restrictions in sub-route <=3 & 
STAR Flow <=5 & merge time differential <65s 

& miles in trail >25NM 

2 8.5% 
Number of speed restriction in sub-route <=3 & 

STAR Flow > 5 & Regional flight = False & 
tailwind <17kts & miles in trail >34NM 

3 7.1% 

Number of speed restriction in sub-route <=3 & 
STAR Flow > 5 & Regional flight = False & 
tailwind <17kts & miles in trail >34NM & 

tailwind differential <3kts 



C. Skip After Merge 
This model did not reach a 60% accuracy level. Hyper 
parameters and training accuracy are listed in Table X. 

TABLE X.  SKIP AFTER MERGE  MODEL SETTING AND PEFORMANCE 

Hyper-parameters 
TPR 

Train/Test 
Difference 

TNR 
Train/Test 
Difference 

Max depth = 17 
Max leaf nodes = 25 
Min impurity decrease = 0.0001 
Min samples leaf = 4000 
Min samples split = 1500 

 
 

-0.00084 

 
 

0.00027 

V. DISCUSSION 
The decision trees showed that window size, average 

slope, distance to previous restriction, and waypoint percent 
had the most impact on vertical adherence. Smaller window 
sizes were predictive of both misses above and below. Window 
size was the most impactful variable for both vertical events. 
Average slope was also predictive of both vertical events. 
Steeper slopes greater than 2.9º increased the miss above rate; 
shallow slopes typically lowered the rate to a point. Nearly flat 
slopes (<1º) were predictive of misses in both events. This 
could be because the ends of many procedures are flat and 
controllers might need to modify altitudes to increase 
efficiency. Waypoint percent was predictive of miss below 
events; more were near the end of the path. This is also 
evidence that controllers were likely intervening and the issue 
is logistical. It’s unclear how distance to previous restriction 
impacts adherence and could be a poor indicator. 

Lateral adherence decision trees performed less accurately 
than the vertical trees. The Skip after merge tree did not 
perform up to our 60% standard. Skip before merge was 
impacted by number of speed restrictions in sub-route, merge 
time differential, tailwind, and STAR flow. Surprisingly, 
increasing the number of speed restrictions consistently 
reduced the skip before merge event rate. This was not 
expected and will require more investigation to understand. 
Merge time differential of less than 69 seconds increased the 
skip before merge rate. This is logical and shows that ATC 
likely uses this lateral maneuver to increase spacing when two 
aircraft are going to meet at the same place at the same time. 
STAR Flow of six or greater increased the skip before merge 
event rate. The increase in traffic variables could be related to 
increases in lateral events because the separation requirements 
may not be met if the aircraft are left on the STAR path. 

A. Miss-classification and Decision Tree Performance 
Given that our highest accuracy was 72%, we 

acknowledge there is still considerable information for each 
event that we do not have. Possible explanations are that our 
variables do not totally describe the phenomena we intend. In 
addition, we have not identified key variables that influence 
the system. ATC and pilot decisions, preferences, and many 
traffic issues we are not measuring could all be possible 
reasons for misclassified events. Specifically, the skip after 
merge decision tree was not informative, indicating we do not 
understand many of the contributory variables. 

Overall decision tree test performance trained well and 
generalized consistently to the test data. Although some 
models did not predict well, the performance of the trees in all 
cases was close to the training set, which indicates that the 
model was not over-fitting. This can be attributed to the 
validation step where the optimization of hyper-parameters 
was created. Limited predictive capability was a lack of 
information and not the mechanics of the method. However, 
portions of the model characterized operations well and 
yielded useful interpretable results.  

B. Interaction Effects 
The main motivation for using decision tree classification 

was its ability to detect non-linear trends and interactions 
between many variables. In addition, the ease of 
interpretability, based on the derived rules, makes information 
understandable. The derived rules for each event demonstrate 
the interdependencies of the domain and show that no single 
issue is responsible for the performance of the system. For 
example, we saw that average slopes greater than 2.9º and 
window sizes of zero (i.e., “at” restrictions) showed 
approximately six times more misses above than the baseline 
rate. However, when the window sizes increased to greater 
than 2,500 ft, the average slope could be less than 3.1º and 
adherence was better than baseline. It is likely that reducing 
the window size is similar to shrinking a target; therefore, 
increasing the precision requirement. Increasing the average 
slope may make speed control an issue, either artificially from 
speed restrictions or structurally from the maximum speed of 
the aircraft. This could force aircraft to shallow descent paths 
and miss the altitude. Further, if the slope of the procedure is 
steep and the altitude restriction is tight, the combination 
might require anticipatory actions from the pilots to ensure 
success. Anticipatory actions could be speed changes, faster 
reactions, amended flight paths, or many other adaptations. 
Ultimately, this could pose unnecessary complexity and 
increase the likelihood of errors if attention is focused 
elsewhere.        

Combinations were not limited to two variables. We 
noticed other interactions with tailwind, average slope, and 
window size. Tailwind in excess of 19 knots worsened 
performance with window size between 1000ft and 4500ft and 
average slopes greater than 2.7º.  This showed that two 
variables could be the better-than-baseline performance range 
and a third could impact the performance beyond the baseline. 
It’s likely that there are many other variables involved in 
increasing the possibility of an event, and it will take more 
research to identify them. 

C. Generalizability  
All tests were performed on all of the STARs in our 

dataset, so variables that are found in more than one location 
we analyzed together for trends. This is a benefit if there is a 
trend in the variable and that variable is shared in different 
parts of the airspace (i.e., different airports). However, the 
decision tree models can also find trends in variables that are 
unique to certain procedures. Thus, a trend may not be 
generalizable because it was only noticed in one location. For 



example, the second rule for miss above events only pertains 
to one waypoint in KPHX airport called HYDRR. Whereas 
the third rule in the miss above event pertains to 27 waypoints 
at 14 airports. 

D. Possible Rule Interpretations 
Most of the non-adherence in the system is likely due to 

intentional adaptations. That is, pilots and controllers chose 
alternative flight paths for logistical reasons. Variables that 
might require ATC action for lateral non-adherence are merge 
time differential, miles in trail, and STAR flow. These 
variables might also require ATC intervention vertically, but 
we do not have the ability to detect this yet. However, merge 
waypoint type was predictive of miss above rates.  

Other types of non-adherence fall into the unintentional 
category. These are altitude and track deviations that could 
pose a threat to the flight’s separation from traffic and terrain. 
We believe that the physics issues associated with descent 
(e.g., slope, wind) have an inhibitory effect on the flight’s 
ability to adhere to altitude restrictions. In addition, increasing 
precisions requirements could also influence error rates. Thus, 
rules showing these variables as predictive might be a source 
of errors in the system.     

E. Practical Applications and Implications 
One goal of this work was to use the RADI system to 

identify occurrence rates of events in the system. In addition, 
we can use RADI to locate the portions of procedures that the 
decision trees predict will have higher non-adherence rates. 
Locating these procedures can be done by filtering the data 
based on the specific rules the trees produce. This targeted 
search can provide possible explanations for events. 
Validation can then be done by searching the ASRS database 
for subjective safety reports to see if these events are being 
reported. 

As an example, we applied this method to Rule 3 in Table 
III. We chose this rule because it had characteristics that could 
inhibit the flight from achieving its goal of making an altitude 
restriction. Figure 6 is a list of the pilot reported deviations 
and waypoints from procedures in the pilots’ own words.  

These reports show miss above events that appear to be 
similar to the trend of the rule: Steep profile and small altitude 
window target. 

F. Limitations 
This study does not show causal relationships between 

events and variables. Some of the rules generated by the 
decision trees are found in single instances of the airspace 
system. This could mean that the variables themselves are not 
explaining the events, but describing where a unique instance 
of non-adherence resides (Rules 1 and 2 in Table III). 
However, we do not know and will need to study this further 
to understand.  

Although we know that some of the non-adherence events 
in our dataset are unintended errors, it is certain that there are 
many other reasons that aircraft were not flying procedures as 
designed. Thus, intent of pilots and controllers is not 
ascertainable and we do not believe that all events are unsafe. 

In fact, we believe most non-adherence is likely adding safety. 
In addition, we were limited to subject matter expertise, 
literature, and incident reports to identify variables of interest. 
More work in this area is likely needed.   

Our data production method is also limited. By labeling 
waypoints and the compartments between waypoints 
differently, we lost the variables that are associated only with 
waypoints (e.g., window size). This could mean that the 
variables associated with the waypoints that are not carried 
over to the compartments near those waypoints are influencing 
the performance of the STAR, but remain undetected. We 
have not devised a logical way to account for this and cannot 
determine the effect of waypoint variables on the lateral 
adherence of a procedure.  

RADI is currently limited to radar data, so airspeed is not 
measurable. Therefore, it is likely we are missing information 
that could help us find additional trends. 

G. Future Work 
Next steps in the work will be to integrate aircraft data into 

the system to replace radar as the source. This will also 
provide precise airspeed, groundspeed, autopilot, speed brake, 
fuel usage, and weight information. Additional work is needed 
to enhance the predictive capability of the lateral non-
adherence events. Further, ethnographic observations of 
operations of pilots and controllers would be useful to gain a 
better understanding of the system. 

Waypoint: LIQWD 
 “The Captain stated we could not make the next crossing 

altitude restriction for LIQWD intersection at 6,000 feet. I called 
out our airspeed at 224 knots to when I noticed us speeding up 
passed our assigned 210 knots.” 

 
Waypoint: ARRTU 
 “Last week, I witnessed the airplane in VNAV PATH unable 

to comply with published speed as it descended via the arrival 
between HEFLY and ARRTU. It had difficulty because the 
airplane inexplicably chose to cross HEFLY at the FL190 high 
end of the published altitude and thus had virtually no chance in 
crossing ARRTU at 10000 and 250 kts.” 

 
Waypoint: COPEN 
 “From a pilot's point of view this arrival could be better, 

safer, and more user friendly by simply extending the distance 
from BLUZZ and COPEN intersection. 9.7 miles is simply not 
enough to lose altitude and slow down. Could it be increased to 
possibly 20 or 25 miles? The chart states that from COPEN 
intersection to the airport is 40NM, surely there is enough room 
to make this possible.”  

 
Waypoint: COPEN 
 “I briefed that I follow the VPI (Vertical Path Indicator) as 

habit on ODP (Optimized Descent Profile) arrivals, and waited 
until the VPI carrot came alive to begin descent. While we met 
BLUZZ below 23000, as soon as we crossed the fix the FMS 
messaged "max grade unable next altitude." We advised ATC we 
were unable to cross the COPEN fix at 10000. ATC handed us off 
to approach, who gave us a vector to join the approach to 18L.” 
 
Fig. 6 ASRS Event Excerpts. 

 
 



H. Conclusion 
This work demonstrates that variables in the domain that 

are not controlled by pilots and controllers are impacting 
adherence to RNAV STARs. Although we are unable to 
distinguish all events in terms of positive or negative, we 
believe that systemic non-adherence is an example of humans 
adapting to a domain that is too complex for a procedure to 
handle. Procedures that do not encompass the variability of the 
domain and failures are both expected and unexpected by 
users. Therefore, non-adherence is both positive and negative: 
positive when humans make the system continue to function 
and negative when the design puts flights in unsafe situations. 
We need to understand how we can compare the envisioned 
functionality of procedures with their actual performance to 
evolve. Future airspace congestion is likely to increase and 
having methods to capture the system’s behaviors will be 
necessary for maintaining and increasing safety. 
Understanding our current strengths and limitations is vital for 
maturing aviation safety.     
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