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Studies of visual detection of a signal superimposed on one of two identical backgrounds show performance
degradation when the background has high contrast and is similar in spatial frequency and/or orientation to
the signal. To account for this finding, models include a contrast gain control mechanism that pools activity
across spatial frequency, orientation and space to inhibit (divisively) the response of the receptor sensitive to
the signal. In tasks in which the observer has to detect a known signal added to one of M different back-
grounds due to added visual noise, the main sources of degradation are the stochastic noise in the image and
the suboptimal visual processing. We investigate how these two sources of degradation (contrast gain control
and variations in the background) interact in a task in which the signal is embedded in one of M locations in
a complex spatially varying background (structured background). We use backgrounds extracted from patient
digital medical images. To isolate effects of the fixed deterministic background (the contrast gain control)
from the effects of the background variations, we conduct detection experiments with three different back-
ground conditions: (1) uniform background, (2) a repeated sample of structured background, and (3) different
samples of structured background. Results show that human visual detection degrades from the uniform
background condition to the repeated background condition and degrades even further in the different back-
grounds condition. These results suggest that both the contrast gain control mechanism and the background
random variations degrade human performance in detection of a signal in a complex, spatially varying back-
ground. A filter model and added white noise are used to generate estimates of sampling efficiencies, an
equivalent internal noise, an equivalent contrast-gain-control-induced noise, and an equivalent noise due to
the variations in the structured background. © 1997 Optical Society of America [S0740-3232(97)04209-9]
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1. INTRODUCTION

Many studies have investigated detection of a briefly pre-
sented signal superimposed on one of two identical fixed
backgrounds (often called the masks).? These experi-
ments have been traditionally called masking experi-
ments. In this paper we refer to these tasks as detection
in a fixed deterministic background. A common finding
in these tasks is that the contrast detection threshold first
decreases (facilitation) and then increases as a function of
the background contrast.'? The signals and the back-
grounds used are generally sinusoidal gratings or Gabor
patches.’? These experimental results have been mod-
eled by a contrast gain control mechanism that has a non-
linear excitatory component and broadband inhibition
that is pooled across spatial frequencies, space, and
orientation.>® In these models the performance degrada-
tion in the presence of a high-contrast background is due
to the inhibitory (divisive normalization) effect of the
background on the receptors responding to the signal.
These models are similar to models used to fit recordings
of simple-cell response in the cat striate cortex.*® Simi-
lar models have also been applied to image discrimination
of more complex images such as object detection in a fixed
background® and quantification of the effect of image com-
pression on image discrimination between an original im-
age and a distorted image (after lossy compression).”

In many practical tasks, the observer has to find a tar-
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get or an object in a complex, spatially varying back-
ground. In such conditions, unlike detection in fixed
backgrounds, the observer has to evaluate locations with
different backgrounds. In addition, unlike the tradi-
tional fixed background experiments, the observer may
have unlimited time to decide about the signal location or
presence.

Many studies have investigated detection of a known
signal in simple random backgrounds (stochastic
noise).® 13 Most of these studies have been performed
with computer-generated, Gaussian, spatially uncorre-
lated (white) noise.®%1* Recent studies have investi-
gated detection in more complex random backgrounds,
such as backgrounds with random inhomogeneities
(lumpy backgrounds)'®!® and filtered noise.!> Models
based on statistical decision theory have been used to
model human performance in these tasks. The model ob-
server uses prior knowledge about the signal and noise
ensemble statistics to evaluate the hypothesis of signal
presence.’ 3 In these models performance is degraded
by the stochastic image noise and by the observer’s sub-
optimal classification rules. Most of these models do not
include a source of degradation that is due to the deter-
ministic presence of the background (contrast gain control
mechanism). The omission of this source of degradation
in the models might be justified on the grounds that in
most of the fixed background experiments the signal is
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presented very briefly (30-70 ms) and that the masking
effect might be negligible in free viewing conditions.
However, Burgess conducted human detection perfor-
mance in a two-alternative forced-choice experiment with
two identical samples of white noise and unlimited view-
ing time and found performance (d') improvement by a
factor of 1.63 over the condition with different samples of
white noise.'* Based on these and other experiments, he
concluded that the external white noise induced an addi-
tional uncorrelated internal noise that was approximately
0.6-0.8 times the external added white noise.*

Our goal in this paper is to examine both the determin-
istic effects of high-contrast backgrounds (contrast gain
control mechanism) and the effects of random variation in
the background when the observer has unlimited time to
detect a target among different samples of a complex
background. Determining the main sources of perfor-
mance degradation will help develop human detection
models for these tasks. These models could be used for
task-performance-based image quality evaluation as well
as display optimization (e.g., image compression, image
enhancement, and reconstruction).

The backgrounds used in this paper were samples ex-
tracted from patients’ digital x-ray coronary angiograms.
They provide complex backgrounds that include many
anatomical features, such as other arterial segments,
lung tissue, and other features, that are not relevant to
the task at hand. The medical image backgrounds
should increase the applicability and relevance of our re-
sults to medical image applications. Many studies have
investigated human visual detection and identification of
signals in simple computer-generated noise, such as
Gaussian spatially uncorrelated noise that approximates
image noise of quantum origin.®%* However, natural
medical image backgrounds not only include quantum
noise but also include other anatomical structures in the
image that are not relevant to the detection task. The
development and testing of psychophysical models for the
detection of abnormalities in natural medical images is a
high-priority goal in the field of medical image
perception.!?

Previously we created test images that combine real
structured backgrounds from x-ray coronary angiograms
with computer-simulated signals to evaluate the effects of
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techniques such as
17
b

image  processing image
compression,'® image enhancement,'” and feature motion
stabilization!® and to investigate the effect of the number
of possible signal locations and signal contrast on
performance.'®

We use a four-alternative forced-choice task in which
the observer has to detect the signal in one of four spatial
locations. To isolate the effects of a fixed background
from the effect of random variations in the backgrounds
we include three different types of background experi-
mental condition: (1) uniform gray background, (2) one
structured background repeated in all four locations, and
(3) different structured backgrounds in each of the four lo-
cations.

In the first condition, the background had a uniform lu-
minance (left-hand image in Fig. 1). In the second con-
dition, a different structured background was sampled on
each trial and was used for all four possible locations
(middle image in Fig. 1). In the third condition, different
samples of structured background were used for each of
the possible signal locations and trials (right-hand image
in Fig. 1). Performance degradation from the uniform
gray background to the repeated structured background
condition can be attributed to the presence of the fixed de-
terministic background. In this paper this degradation
is interpreted as the effect of a contrast gain control
mechanism. Performance degradation from the repeated
background condition to the different backgrounds condi-
tion is interpreted as the effect of the random variations
across background samples.

For each condition we use five levels of signal contrast
to investigate the effect of signal strength. For each
background condition we investigate five conditions with
different amounts of added random white visual noise
(Gaussian distributed). These conditions enable us to
use a method introduced by Pelli?® to estimate three noise
sources: a constant equivalent internal noise, an equiva-
lent contrast gain control noise, and an equivalent back-
ground random variation noise. Each of the noise mea-
sures can be interpreted as the amount of white noise
that needs to be added to the stimulus to produce a per-
formance degradation equivalent to that produced by the
corresponding source of performance degradation (inter-
nal noise, contrast gain control mechanism, or random

Fig. 1. Images used in a four-alternative forced-choice detection task in which the observer had to indicate the signal location among
four possible locations. The signal was always embedded at the horizontal and vertical center in one of the four simulated arteries
(lower-contrast bars in the image). The study included three experimental background conditions: (1) uniform gray background (left-
hand image); (2) repeated structured background condition in which the same sample of background was used for each of the four pos-
sible locations (middle image); (3) different structured background condition in which a different random sample of background from a
population of backgrounds was used for each of the four possible locations (right-hand image). The displayed photograph was scaled for

presentation purposes.
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variations across backgrounds). Before describing the
psychophysical experiments in detail we discuss the ideal
observer and human models for three background condi-
tions with added white noise.

2. THEORY
A. Detection in White Noise

1. Ideal Observer

The best expected performance in a noise-limited task is
that of the ideal Bayesian observer.?! Ideal observer per-
formance has been compared with human performance in
a variety of visual tasks.??2> The ideal observer com-
putes the likelihood of the signal given the data at each
possible location and chooses the location with the high-
est a posteriori likelihood.?! For the case of a signal em-
bedded in Gaussian white noise with equal probability of
appearance in one of M locations, the ideal observer
needs only to correlate the data with a template that
matches the signal (matched filter) at the M possible sig-
nal locations.?? The ideal observer then chooses the loca-
tion that elicited the highest output correlation. Given
that the output correlation to the signal plus noise and
the noise are Gaussian distributed with equal variance,
then performance can be measured as

d'= ——:, 1)

where )\, is the mean output correlation to the signal plus
noise, A\, is the mean output correlation to noise only, and
o, is the standard deviation of the output correlation (as-
sumed to be equal for signal plus noise and noise only).
For the ideal observer it can be shown that d g, , referred
to as the signal-to-noise ratio, can be expressed in terms

of the square root of the energy and the spectral noise

density?®:
|E
SNR = \/+. (2)
N,

E is the signal contrast energy defined as

E = Jj S2(x, y)dxdy, 3

where S(x, y) is the signal intensity profile and N, in Eq.
(2) is the noise spectral density. When the white noise
consists of discrete samples and the sampling distance
(pixel width) is defined as unity, then N is the pixel noise
variance.

We can relate the signal-to-noise ratio to percent cor-
rect performance by calculating the probability of the sig-
nal response taking a value x and the cumulative prob-
ability of the remaining M — 1 responses to the noise-
only locations taking a value less than x2°:

+oo

Pe(M, d') = f g(x — d")GM (x)dx, 4)
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where

x2

2

>

1
g(x) = \/5- exp

G(x) = fﬁ g(y)dy.

2. Human Observer

Human visual performance detection and identification
of a known signal in white spatial noise has been
successfully modeled as a suboptimal Bayesian
observer.®%1423-25  The jdea of modeling human perfor-
mance in terms of a suboptimal matched filter observer is
not incompatible with the notion of a multichannel visual
system. Models that have initial multichannel process-
ing followed by a Bayesian or suboptimal Bayesian ob-
server have been proposed.'>!” However, the human ob-
server has a number of sources of limitations: a constant
additive internal noise,® another additive internal noise
component proportional to the external noise,* subopti-
mal sampling efficiency,®?*?” and unavoidable intrinsic
uncertainty.?>24%  Internal noise arises from the noise
in the neural firing of cells?® as well as from fluctuations
in the decision criteria used by observers.?® Pelli pro-
posed a method to measure the amount of constant inter-
nal as equivalent internal noise, which is the amount of
added external white noise needed to degrade perfor-
mance by an amount equivalent to the internal noise.2°
Sampling efficiency refers to the observer’s inability to
perfectly match his or her filter to the signal profile or to
integrate over the entire signal area. The index of de-
tectability for the human observer modeled as a subopti-
mal matched filter with a source of internal noise is given

by27
[ Ju
d' = 8\JE, where &= —— - 3 (5)
g” + o,

and J;, is the sampling efficiency (the subscript refers to
uniform background), ;2 is the equivalent internal noise,
and 0,2 is the external white-noise variance. Equation
(5) predicts a linear relationship between the signal con-
trast or square-root signal contrast energy and d’. How-
ever, experiments on detection of signals in the presence
and the absence of external noise show a nonlinear rela-
tionship between the signal contrast and d'.3%%? One in-
terpretation for this result is that there is a nonlinear
transducer function acting on the physical signal strength
to produce the response within the observer.332 A dif-
ferent account of the nonlinearity between signal contrast
and d’ is based on stimulus uncertainty in the decision
process.?® In this model the observer is uncertain about
some aspect of the signal and therefore not only monitors
the M task-relevant decision variables but also monitors
U-irrelevant decision variables, where U is referred to as
the uncertainty number. This uncertainty in the deci-
sion process produces a nonlinearity in the psychometric
function (d' versus signal contrast); however, it will not
affect the slope of the function at higher signal contrast
levels.2® In this paper we take this second approach and
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use stimulus uncertainty to model departures from the
linear relationship between d’ and signal contrast. In
our specific model of stimulus uncertainty, each of the M
signal locations has associated with it U additional irrel-
evant, statistically independent decision variables. The
observer is assumed to monitor the decision variable re-
sponding to the signal, the M — 1 noise decision vari-
ables, and UM irrelevant decision variables and chooses
the location with the maximum response. The observer
will then respond to the signal location if either the re-
sponse to the signal or any one of the U-irrelevant deci-
sion variables associated with the signal location takes a
larger value than the (M — 1)U decision variables asso-
ciated with the nonsignal locations. The maximum rule
adopted here is not the optimal Bayesian rule in the case
of uncertainty but approximates it in many cases.?®
Pelli?® suggests the use of the Weibull function to fit psy-
chometric functions and provides a table to compare the
obtained parameter fits for these functions with an asso-
ciated uncertainty number. Instead of using these func-
tions, we choose to fit our data with the exact uncertainty
prediction [Eq. (6)].

Percent correct for the maximum rule in the presence
of uncertainty can be calculated to be

+oo

glx — d)[Gx)M+~1]

Pe(M, U, d’) = f

+ Ug(x)[G(x)|MAI+V=21G(x — d')dx,
(6)

where M is the number of possible signal locations in the
task (relevant decision variables), U is the uncertainty
number corresponding to the irrelevant decision variables
per location monitored by the observer, d’ is defined as
the distance in standard deviation units between the sig-
nal and noise distributions [Eq. (5)], and g(x) and G(x)
are as previously defined [Eq. (4)]. Equation (6) assumes
that the internal responses have Gaussian distributions.
Burgess has confirmed that the Gaussian assumption can
successfully predict human performance in detecting a
disk at one of M locations in spatially uncorrelated
Gaussian noise.?3

Unlike previous methods®“" used to estimate the sam-
pling efficiency and equivalent constant internal noise
[Eq. (5)], Eq. (6) allows effects of uncertainty to be sepa-
rated from sampling efficiency and internal noise.

8,20

B. Detection in White Noise with Deterministic
Background

1. Ideal Observer

The ideal observer strategy for signal detection in one of
M locations consisting of white Gaussian noise and a re-
peated background remains the same as with a uniform
background. Since the M backgrounds are the same
across the M locations, the matched filter output at the
different locations will have the same filtered background
constant added, and performance will not be affected.
Performance for the ideal observer in this condition is de-
scribed by the equations used for the detection of a signal
in white noise with a uniform background.
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2. Human Observer

Unlike the ideal observer, a fixed high-contrast back-
ground does degrade human performance in detecting a
signal. For example, Legge and Foley! measured detec-
tion of a sine-wave grating superimposed on a back-
ground (mask) sine-wave grating with varying spatial fre-
quency. Their high-contrast results showed a threshold
elevation for a range of masker frequencies within an oc-
tave around the target frequency. Burgess®* found that
the detectability of a disk in white noise was reduced in a
sinusoidal and a square-wave background as compared
with a uniform background. The effect of a high-contrast
background has been modeled by a contrast gain control
mechanism that normalizes (divisively) the response of
the mechanism sensitive to the signal.2® Foley? pointed
out that the response strength of the Legge-Foley model
could be interpreted as a signal-to-noise ratio (difference
in the mean response to the signal plus background and
background-only divided by the standard deviation of the
response). This interpretation assumes that after the
nonlinearity there is a unit additive internal noise vari-
ance that is constant for all background contrast.
Ahumada® and Legge et al.2” have shown that a nonlin-
earity with constant internal noise can be equally well
modeled by a constant signal response and a stimulus-
dependent internal noise. In the present context, the
contrast normalization with constant internal noise can
be equally well modeled by an additional nonconstant
noise source in the decision variable that is determined by
the background. We shall refer to this source of noise as
the contrast-gain-control-induced noise. If we assume
that the constant internal noise is independent of the
noise induced by the presence of the deterministic back-
ground (contrast gain control), then d’, the index of de-
tectability for human visual performance in the presence
of the deterministic same-structured background and
added external white noise, is given by

1/2
Jsb

d' = 5\/5, where 6 = 3 (7

2 2
og° + o, + Ocge

and J, is the sampling efficiency in the presence of the
deterministic same background, ;2 is the equivalent con-
stant internal noise, chc2 is the equivalent contrast gain
control noise, and o,2 is the external white-noise vari-
ance. Modeling the effect of the presence of a determin-
istic structured background on performance in terms of
an additional induced noise component is not a new
method. Burgess and Colborne'* used this method to
model the effect of a fixed deterministic white-noise back-
ground. The equivalent contrast gain control noise
(0g>) should be interpreted as the amount of white noise
that needs to be added on a uniform background to de-
grade performance as much as the effect of the determin-
istic background (contrast gain control). An assumption
made in our working model is that the sampling efficiency
with a deterministic background (J;) does not change as
a function of external noise. This assumption requires
that the observer use the same effective filter across all
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levels of added white noise. However, as we discuss in
Section 5, the fixed filter assumption might be violated for
many reasons.

A final step in the model is to obtain percent correct
performance from d' by using Eq. (6) to allow for possible
sources of stimulus uncertainty, based on a Gaussian dis-
tribution assumption. This is reasonable if the decision
variable statistics are dominated by the statistics of the
added Gaussian-distributed external white noise. How-
ever, if the deterministic background induces a source of
variability that is not Gaussian distributed, then the
Gaussian internal response might be violated.

C. Detection in White Noise with Background with
Random Variations

1. Ideal Observer

In filtered noise backgrounds, the ideal observer strategy
is to compare the data with a template (filter) that com-
pensates for the noise spatial correlations.!’ This filter
can also be described as the product, in the frequency do-
main, of the matched filter and a prewhitening filter that
removes the noise correlations.!! Predicting ideal ob-
server performance for detection in complex backgrounds
with random inhomogeneities (lumpy backgrounds) or
real patient structured backgrounds would involve the
use of nonlinear procedures.!®!® Because of the math-
ematical complexity of the ideal observer in these cases,
investigators have compared linear models with human
performance.

2. Linear Models and Human Observer

In linear models, the observer correlates a template (fil-
ter) with the data at the possible signal locations and
chooses the location that elicits that largest response.
The models differ in the prior knowledge that they use
and in their information constraints in constructing the
filter. The optimum linear observer, the Hotelling
observer'®!? calculates the best possible linear filter
based on the known signal shape and on the ensemble
statistics of the background (variance covariance matrix).
Others®$-38 have used Hotelling observers with the addi-
tion of a channel mechanism and front-end limitations®’
that constrain the possible amount of noise decorrelation
by the observer. Another proposed model is the nonpre-
whitening matched filter model that uses knowledge
about the signal but ignores the background
correlations.’®1®  Burgess proposed a modified nonpre-
whitening matched filter model that incorporates a front-
end eye filter to account for the contrast sensitivity
function.!® In all these models the source of the perfor-
mance degradation is the random background variations,
which cause random variations in the model’s output
from location to location. There is still no consensus
about which of these models predicts human performance
the best.

In this paper we do not assess performance of these op-
erational models for particular filters. Our interest is to
quantify the relative effects of the contrast gain control
mechanism and the random background variations on hu-
man performance. Therefore we adopt an expression for
performance similar to the expressions used for the detec-
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tion of a signal in white noise and in white noise with a
fixed deterministic background. In doing so, we implic-
itly assume that the observer uses the same linear filter
for varying levels of added external noise. If an observer
uses a fixed linear filter for the different levels of the
added external white noise (holding the contrast of the
different structured backgrounds constant), d' will be re-
lated to the external noise variance as follows3:

d = 5\/5, where

. 1/2
P Jrb (8)
- 2 2 2 2 ’
g, + o7+ Oege + Oy

where J,;, is the sampling efficiency in the presence of
random background variations, ;2 is the equivalent in-
ternal noise, crcgc2 is the equivalent contrast gain control
noise, oy, is the equivalent random background varia-
tion noise, and ¢,2 is the external white-noise variance.
The equivalent random background variation noise, 0,2,
is interpreted as the amount of added white noise needed
to degrade performance as much as the random varia-
tions in the structured background. Note that the stan-
dard interpretation of the sampling efficiency as the cor-
relation between the human effective filter and the ideal
observer filter or the matched filter does not hold for the
present case. In this case j,, is simply a constant that
relates d’ to the square-root signal contrast energy. The
exact shape of the linear filter used by the observer will
affect the sampling efficiency, j,,; however, it will not
change the relationship between d’ and the external
white-noise variance as long as the observer always uses
the same filter as the added external white-noise level
varies. The plausibility of the fixed filter assumption is
addressed in Section 3.

To compute percent correct performance from d’ in the
different structured background condition, we again use
Eq. (6), which requires that the internal responses to the
varying structured backgrounds be Gaussian distributed.
This assumption has been investigated by measurement
of detection performance in structured backgrounds as a
function of the number of possible locations. Eckstein
and Whiting!'® found that the Gaussian assumption is
reasonable for such complex backgrounds and success-
fully predicts the effect of the number of possible locations
on performance.

3. METHODS

A. Generation of Test Images

The experimental image generation procedure was de-
signed to approximate the x-ray image generation process
by use of real backgrounds from x-ray coronary angio-
grams and simulated arterial segments and signals.'®
Arterial segments are generated by mathematical projec-
tion of a three-dimensional right-circular cylinder with a
diameter of 3.0 mm (10 pixels) onto the patient structured
background. One calculates the individual pixel inten-
sity value by assuming that the cylindrical segments were
filled with x-ray-absorbing iodinated contrast material
with an attenuation coefficient of 0.10/mm. The signal
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was a hemiellipsoidal filling defect embedded within one
of the three arterial segments. The two-dimensional pro-
jection of the lesion (signal) appears as a brighter disk.
The disk is blurred with a Gaussian point-spread function
with a standard deviation of 0.30 mm. A detailed discus-
sion of the test image generation has been presented
previously.!® For the specific experiments in this paper,
we generated three types of image sets (Fig. 1): (1) uni-
form gray background, (2) repeated structured back-
ground, and (3) different structured background. For the
uniform gray background condition the mean luminance
level of the background was manipulated from trial to
trial to match the mean gray level of the structured back-
grounds in the repeated structured background condition.
Since the external white noise is additive, the rms noise
contrast, which is defined as the ratio of the noise stan-
dard deviation and the mean background luminance,
changes with background luminance. The reported rms
noise contrast values are for the average background lu-
minance.

In the repeated structured background condition, one
sample from 400 possible structured background samples
was randomly chosen and was used as a background for
the four possible signal locations.’® In the different back-
ground condition, four different samples of structured
background were sampled without replacement for each
of the four possible signal locations. The test images
were 128 X 128 pixel images subtending a visual angle of
4.15 X 4.15 deg.

Signal energies in the resulting images were calculated
by use of Eq. (3). The average white-noise rms contrast
values were 0, 0.071, 0.125, 0.18, and 0.25. The squared
rms noise values can be transformed to spectral densities
by multiplication by the pixel area, 1.14 X 1073 deg?.
The resulting noise spectral densities (in deg?®) are 5.75
X 1075, 1.785 X 107®, 3.95 X 1075, and 7.13 X 1072,

B. Psychophysical Studies

The two naive observers participated in the study after
approximately 100 trials of training for each condition.
For each of the three background conditions there were
five different levels of additive white noise. The study
therefore contained a total of 3 (background conditions)
X 5 (added-noise conditions) conditions. Observers
participated in seven sessions of 150 trials for each ex-
perimental condition. Each session had 30 trials at each
of five levels of signal contrast. The observer selected a
position by clicking on its location with the mouse. The
images were presented on a GMA201 19-in. high-
resolution monochrome Tektronix gray-scale monitor
driven by an 8-bit image buffer. Video display luminance
was measured with an IL 180 photometer system (Inter-
national Light, Inc., Newburyport, Mass.). The mean lu-
minance of the test images was 5.5 cd/m?, which corre-
sponds to a gray level of 128. Viewing was binocular
from a distance of approximately 50 cm. Observers had
unlimited time to reach a decision.

4. RESULTS

Percent correct performance was computed separately for
each session and each signal contrast level. Performance
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was then averaged across sessions (within each experi-
mental condition) for each observer. Percent correct was
converted into d'(M = 4, U = 0) [with Eq. (4)], the dis-
tance in standard deviation units between the noise and
the signal internal response distributions, assuming no
stimulus uncertainty (U = 0). This is a customary way
of plotting performance.®'4?® Figures 2 and 3 show per-
formance, d'(M = 4, U = 0) as a function of square-root
signal contrast energy (which is linear with signal con-
trast) for each of the experimental conditions. Error bars
represent 95% confidence intervals computed by propaga-
tion of the binomial variance of percent correct to d’ by
the method of partial derivatives.

A. Statistical Efficiency

The statistical efficiency for a given task is a measure of
the relative performance of the human observer with re-
spect to the ideal Bayesian observer. For our models it
can be measured by the squared ratio of the index of de-
tectability for the human and the ideal observer
(A} uman/ @ iaea) 2. 2224%5  The statistical efficiencies ranged
from approximately 10% to 30% for the uniform back-
ground condition and from 6% to 25% for the repeated
structured background condition, depending on the level
of external noise and signal contrast. No statistical effi-
ciencies are reported for the different structured back-
ground conditions because of the complexity of the calcu-
lation for the ideal observer in such a case (see Subsection
2.C.2 for more details).

B. Psychometric Function Slope and Uncertainty
Number
Psychometric functions [Eq. (6)] were estimated with two
free parameters: Sand U (the uncertainty number), and
two known parameters: the number of possible loca-
tions, M, and the square root of the signal contrast (\VE).
The parameter § controls the slope of the function at high
signal contrast levels (linear portion of the psychometric
function). The uncertainty number, U, produces a non-
linearity at low signal contrasts and produces positive
shifts in the positive x direction for the upper portion of
the psychometric function without altering its slope.
Separate fits were done for each background and added-
noise condition by use of a y? criterion based on the bino-
mial variance of percent correct. Table 1 shows the best-
fit parameters for both observers for each of the
experimental conditions. For both observers, the slope of
the psychometric function decreased as the added white
external noise increased, for all three background condi-
tions (Table 1). The slopes show a decrease from the uni-
form gray background to the repeated structured back-
ground to the different structured backgrounds, an effect
that disappears as the added white noise increases. For
the repeated structured background and different struc-
tured background conditions, there was a tendency for
the uncertainty number to increase with added external
noise (Table 1). For the uniform background the 0.071
and 0.125 noise rms contrast resulted in nonzero uncer-
tainty numbers for both observers.

The percent correct model predictions [from Eq. (6)]
were then converted to d'(M = 4, U = 0) with Eq. (4) to
plot them in the same units as the data (solid curves in
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Figs. 2 and 3). Uncertainty in these plots results in
shifts along the positive x axis of the upper linear portion
of the function.

C. Sampling Efficiencies, Equivalent Internal Noise,
Equivalent Contrast Gain Control Noise,

Equivalent Background Variation Noise

Figure 4 shows the slope of the psychometric function as a
function of the added white noise for the three back-
ground conditions. A fit to the slope as a function of
added white noise was done by simultaneously fitting of
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Fig. 2. (a)-(e) Performance for observer KS as measured by

d" (M =4,U = 0), Eq. (4), as a function of square-root signal
contrast energy for three background conditions: uniform gray
background (O), repeated structured background ( 4 ), and differ-
ent structured background (O). The five panels correspond to
five different levels of added rms white noise: (a) 0, (b) 0.071, (c)
0.125, (d) 0.18, (e) 0.25, respectively. The symbols correspond to
data points from an experiment based on 210 trials per data
point. The error bars correspond to 95% confidence intervals
based on the propagated binomial variance. The solid curves
represent the best fits of Eq. (6) to the data for each condition.
The dashed line represents performance for the ideal observer
calculated from Eq. (2).

the data with Eq. (5) for the uniform gray background
condition, with Eq. (7) for the same structured back-
ground condition, and with Eq. (8) for the different struc-
tured background condition with six free parameters:
sampling efficiency in the uniform background condition
(J ), sampling efficiency in the same structured back-
ground condition (J,), sampling efficiency in the differ-
ent structured background condition (J,,), equivalent in-
ternal noise (0,2), equivalent contrast gain control noise
(o-cgcz), and equivalent background variation noise
(0py2). The fit was based on a mean-square error crite-
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rion between the model prediction and the measured psy-
chometric function slopes (5).

A 2 criterion on the predicted percent correct was not
used because the numerical evaluation of the integral in
Eq. (6) on each iteration of the fit would have resulted in
extremely long durations for the iterative computer fits.
Tables 2 and 3 list the best-fitting parameters for both ob-
servers. We calculated a 2 goodness-of-fit measure by
first calculating the predicted percent correct with the
best-fit parameters, using Eq. (6), and then dividing the
mean-square error by the expected binomial variance in
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the data (Tables 2 and 3). The solid curves in Fig. 4 are
the predictions of the best-fit model to the slopes given in

Table 1.

5. DISCUSSION
A. Uniform Background

The statistical efficiency for the uniform background con-

dition for both observers ranged from ~10% to ~30%, de-
pending on the external noise level and signal contrast.

Noise rms=0.18 GN
—~ 27
o
1l
=
<t
I
2
= 14
0 T T
0 0.25 0.5 0.75 1 125
(d)
=)
1]
D
iy
1l
2
o

0.75 1 1.25

0 0.25 0.5

Square-Root Signal Contrast Energy
()

Fig. 3. Same as Fig. 2, but for observer GN.
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Table 1. Best Fits to the Individual Psychometric Functions by Use of Eq. (6), Which Allows
for Possible Signal Uncertainty®

Noise rms

0 0.071

0.125 0.18 0.25

Observer KS
Uniform 6=17.6
background U=0
Same structured 5§=1.0
background U=
Different structured 5=4.2
background U=0
Observer GN
Uniform 5="72
background U=
Same structured
background
Different structured 5= 331
background
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“There are two free parameters: the slope of the function (§), and the uncertainty number U.

An increase in statistical efficiency with external added-
white-noise level is expected, since the relative contribu-
tion of the internal noise should decrease with increasing
external noise. An increase in statistical efficiency with
increasing signal contrast is expected when there is
stimulus uncertainty, since stimulus uncertainty affects
low signal contrasts more than high signal contrasts.

The obtained statistical efficiencies are somewhat
smaller than those obtained by Burgess and Colborne'*
(40%) but are larger than those obtained by Myers et al.!
(12%) for a similar target.

The proportionality between d’ and signal contrast for
the case of a uniform background without noise differs
from the common result of a nonlinear accelerating func-
tion for the detection of sinusoidal gratings.?! Perhaps
the projected simulated arterial segments containing the
signals act as pedestals. Studies have shown that the
presence of a pedestal that is identical to the signal (con-
trast discrimination task) reduces the effect of uncer-
tainty and will produce a linear d’ versus signal contrast
function.24?83!  If the pedestal reduces the effect of un-
certainty, then one might expect that increasing the ad-
ditive white noise for a fixed pedestal contrast might in-
crease the effect of uncertainty. The U estimates do not
show a clear trend (see Table 1). The linear shape of the
psychometric function could also be attributed to the dif-
ference between the disk signals used in this study and
the sinusoidal or Gabor signals of the other studies.!42425
For aperiodic signals such as disks and Gaussian blobs,
d' versus signal contrast functions in the presence of
noise are close to linear (with a 0 x intercept).!%2540
However, the psychometric functions for periodic signals
such as sinusoidal and Gabor signals show a more pro-
nounced nonlinearity.2#?>4?  The nonlinearity increases
with the center spatial frequency of the signal

The equivalent internal noise is the amount of external
noise that needs to be added to the image to produce a
degradation in detection performance equivalent to the
effect of the internal noise.?® The estimated values of in-
ternal noise in absolute units for both observers were
slightly larger than values of internal noise (approxi-

Psychometric Function slope(3)

0.5

20

GN

Psychometric Function slope(d)
i

T T T T
0 0.1 0.2 0.3 0.4 0.5

External Noise rms
(b)

Fig. 4. Slope of psychometric functions for (a) observer KS and
(b) observer GN as a function of the external noise rms for the
three background conditions: uniform background (OJ), repeated
structured background (4 ), and different structured background
(O). The solid curves correspond to the simultaneous fit of Egs.
(5), (7), and (8) for the corresponding background conditions with
six free parameters: three sampling efficiencies, equivalent in-
ternal noise, equivalent contrast gain control noise, and equiva-
lent background variation noise. The dotted curve corresponds
to the ideal observer performance in white noise.
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mately 1 X 107® deg®) obtained by Pelli’s analysis of
other data sets with similar mean luminance levels.?’

B. Effect of a Deterministic Structured Background
Comparisons between observer performance in the uni-
form gray background condition and the repeated struc-
tured background condition indicate the effect of the de-
terministic structured background on human per-
formance. The results show that, for both observers
(Figs. 2 and 3), performance for the repeated background
condition was degraded with respect to the uniform gray
background for all levels of added white noise. In the ab-
sence of added white noise, the slope of the psychometric
function was reduced by a factor of 2.51 for observer KS
and by a factor of 1.53 for observer GN. Our high-
contrast deterministic complex background degrades per-
formance despite the unlimited decision time.

The effect of the deterministic structured background
on human performance is independent of the signal con-
trast level [the effect on d' as given by Eq. (7) is indepen-
dent of the signal contrast]. In our model, departures
from this prediction are interpreted as differential stimu-
lus uncertainty across conditions. Other interpretations
might be possible. In the repeated background, the sta-
tistical efficiency dropped for both observers from 10% to
1%, depending on the white-noise level. The effect of the
deterministic background on performance decreased with
increasing levels of added white noise.

Performance degradation from a deterministic back-
ground has been explained by a contrast gain control
mechanism that normalizes the response of the mecha-
nisms responding to the signal.>® We represent the ef-
fect of the contrast gain control mechanism by an induced
noise component in the decision variable. Ahumada®
and Legge et al.?” have shown that a model with a re-
sponse nonlinearity with constant internal noise is
equivalent to a model with a linear response and a signal-
dependent noise. The noise component induced by the
presence of the structured background is a function of the
background contrast; however, we did not manipulate the
rms contrast of the structured background in these ex-
periments. The equivalent contrast gain control noise is
the amount of external noise added to the image needed
to degrade performance by the same amount as the deg-
radation due to the contrast gain control. The estimates
of the rms equivalent contrast gain control noise were
similar for both observers (0.049 for observer KS, and
0.04 for observer GN); however, the measured and pre-
dicted performance degradation due to the contrast gain
control noise was larger for observer KS. This is because
the ratio of the contrast gain control noise to the internal
noise is greater for observer KS (o; = 0.032) than for ob-
server GN (o; = 0.074). The estimated sampling effi-
ciency in the presence of the structured background was
smaller than the sampling efficiency in the uniform back-
ground. However, for observer KS, constraining the
sampling efficiencies to be equal, did not degrade the fit
(Table 2).

A strong assumption in our working model is that the
sampling efficiency does not change as a function of in-
creasing added white noise. This assumption requires
that the human observer use the same filter for the dif-
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ferent relative amounts of added white noise and struc-
tured background. This would be expected if the noise
induced by the contrast gain control was also white. The
optimal strategy would remain the same irrespective of
the relative amounts of added white noise and structured
background. However, if the noise induced by the con-
trast gain control mechanism is not white, then the opti-
mal strategy changes as a function of the added-white-
noise level, since the effective power spectrum changes.
When the white noise dominates the contrast-gain-
control-induced noise the optimal strategy would be
matched filtering. But when the contrast-gain-control-
induced noise dominates the white noise the optimal
strategy involves prewhitening prior to the matched fil-
tering. However, observers might be able to adjust the
filtering strategy, depending on the relative amounts of
added white noise and structured background.

Our analysis quantifies the effect of the deterministic
structured background averaged across many samples.
To predict the specific effect of an individual sample of
structured background on signal detection, a detailed
model of contrast gain control could be used. However,
directly applying current contrast gain control models®?
to predict the effect of deterministic backgrounds in tasks
with unlimited decision time is not straightforward.
Some of the current contrast gain control models have
been fitted to data for presentation times of ~30 ms?.
The applicability of these results to experiments in which
the observer has unlimited time to perform the task is un-
known. Some recent experiments have shown that the
presentation times will change the effect of the back-
ground on the signal’s threshold. Ross et al.*! presented
the background and signal for 2 s and found lower effects
of the mask than were found by Foley.? Foley*? has also
performed experiments with a stimulus presentation of
100 ms (versus 33 ms), finding that the orientation band-
width of the inhibitory pooling mechanism decreases with
the extended presentation time.

Another potential complexity is that familiarity with
the background will decrease the effect of the background
on the contrast threshold of the signal. Ahumada et al.*?
compared a condition in which a different white-noise
background sample was added on each trial with a second
condition in which the same noise sample was used
throughout the blocks of trials. Masking was reduced
with the familiar background. Smith and Swift** have
also shown that background familiarity will reduce the
performance degradation due to the background. Con-
trast gain control cannot account for this difference. The
effect of an unfamiliar background is not the result of just
a hard-wired mechanism (contrast gain control). Its pre-
diction requires understanding the decision strategy of
the observers.

C. Effect of Structured Background Variations

Differences between the repeated background condition
and the different background condition indicate the effect
of background variations, across backgrounds, on perfor-
mance. For both observers, performance in the different
structured background was poorer than in the repeated
background condition. Without white noise [Figs. 2(a)
and 3(a)] the slope of the psychometric functions (and



2416 J. Opt. Soc. Am. A/Vol. 14, No. 9/September 1997

therefore d’) was reduced by approximately one third
from the repeated structured background to the different
structured background. This result is similar to the de-
crease in performance measured by Burgess and Colborne
from a two-alternative forced-choice disk detection for re-
peated samples of white noise to different samples of ex-
ternal noise (a factor-of-1.59 reduction).!* For observer
GN the reduction factor is comparable with that for the
contrast gain control mechanism. For observer KS re-
duction in the slope from background variations is some-
what smaller than the contrast gain control reduction.

Eckstein et al.

Our result shows that interlocation random variation in
the background can be a significant source of performance
degradation in detection in a complex spatially varying
background. The estimated values for the equivalent
background variation noise were of larger magnitude
than the equivalent internal noise and the equivalent
contrast gain control (see Tables 2 and 3). The estimated
sampling efficiency for the case of different structured
background conditions was similar to the sampling effi-
ciency in the same structured background and somewhat
smaller than the uniform background condition. How-

Table 2. Best Fits to the Variation of the Psychometric Slope (§) as a Function of the External Added
White Noise, Obtained by Use of Eq. (5) for Uniform Background Condition, Eq. (7) for the Repeated
Structured Background Condition, and Eq. (8) for the Different Structured Background Condition

(Observer KS)*

Parameter Best Fit Constraint df xAdf
Sampling efficiency 0.316 No constraints 54 3.67
(uniform, oJ ;)
Sampling efficiency 0.166 Jp =g = I 2 —1.65°
(same structured background, /)
Sampling efficiency 0.166 Jgp = I 1 —4.03°
(different structured background, ¢/ ;)
Equivalent internal noise® o;2 = 0.0322
Equivalent contrast gain Oege” = 0.0492 O = 0 1 178.7
control noise
Equivalent background O’ = 0.0752 T2 = 0 1 248.8

variation noise

“There were six free parameters: the equivalent internal noise, the equivalent contrast gain control noise, the equivalent background variation noise,
and three corresponding sampling efficiencies. The third column describes fits with additional constraints. The fourth column has the degrees of freedom

for the test. The fifth column has the goodness-of-fit measure, x?/df.

The negative y2 values for the constraints on sampling efficiencies are caused by the fact that the parameter fits were performed on the psychometric
function slopes by use of a rms error criterion and not based on a y2 criterion (see Section 3 for more information).
“To obtain the noise spectral density of the equivalent internal noise in degrees squared, one must multiply the equivalent noise by the constant 1.14

X 1072 deg®/pixel?.

Table 3. Same as Table 2, but for Observer GN

Parameter Best Fit Constraint df X2/df
Sampling efficiency 0.308 No constraints 54 5.2
(uniform, oJ ;)
Sampling efficiency 0.166 Jw=Jdgp = I 2 9.0
(same structured background, /4,
Sampling efficiency 0.2083 Jgp = I 1 18.00
(different structured background, ¢/ ;)
Equivalent internal noise? ;2 = 0.0742
Equivalent contrast gain chc2 = 0.04? chc2 =0 1 27.2
control noise
Equivalent background Oy’ = 0.122 Opy? = 0 1 56.07

variation noise

“To obtain the noise spectral density of the equivalent internal noise in degrees squared, one must multiply the equivalent noise by the constant 1.14

x 1073 deg¥/pixel?.
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ever, a fit that kept the sampling efficiency constant
across conditions did not improve the fit for GN but did
for KS.

A main assumption of our model is that the sampling
efficiency remains constant as a function of the added
white noise in the image. The assumption would hold if
the observer used the same filter for all rms white-noise
levels (fixed filter assumption).?® This assumption would
be violated if the observer tried to optimize its filter as a
function of the relative amount of white noise and inter-
location random variation in the background. At relative
high levels of white noise a matched filter would be close
to optimal, while at low levels of white noise a filter that
attempts to decorrelate the combined noise would per-
form better (e.g., Hotelling!®! and channelized
Hotelling®¢-38 models). Several experiments on detection
in filtered noise and backgrounds with random inhomoge-
neities have yielded results consistent with the adaptive
filtering by human observers.!® However, Burgess
showed that a fixed matched filter with a front eye filter
(modified nonprewhitening matched filter) can also ac-
count for human detection in backgrounds with random
inhomogeneities.!®> Recently, Burgess presented new ex-
periments on detection in backgrounds with two noise
components (a white-noise component and a low-pass-
filtered noise), showing that humans can perform adap-
tive filtering (partial prewhitening).?® Together, these
results!®1%3 suggest that future work should test the
fixed filter assumption for the case of structured back-
grounds and white noise used in our experiments.

D. Effect of Additive White Noise

For both observers the relative effects of the fixed deter-
ministic same background condition (contrast gain con-
trol) and the different background condition (random
variations) on performance were reduced with increasing
added white noise. In our model, when the white-noise
level is high, it dominates the variability in the decision
variable. In this case, an induced noise from the deter-
ministic fixed background or a noise source from random
variations in the background will have a relatively small
effect.

On a uniform background, d’ is related to the rms con-
trast white noise as described by Eq. (5) (the energy
threshold is linear with the noise spectral density). This
relationship is supported by detection and contrast dis-
crimination experiments by Burgess et al.,® Pelli,?’ and
others (e.g., Nagaraja?®). For the deterministic struc-
tured background and the different structured back-
ground conditions we assumed that the mathematical re-
lationship between d' and the squared rms noise was
unaffected (except for the sampling efficiency). This as-
sumption would hold if the observer used the same filter
for the different rms added-white-noise conditions. How-
ever, if the fixed filter assumption does not hold, then de-
partures from Egs. (7) and (8) might arise.®®

In our treatment we have assumed that the degrading
effect of white noise is from its variability from location to
location. However, the white noise will also affect perfor-
mance through the contrast gain control mechanism.
Experiments by Burgess'* that measured detection in a
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two-alternative forced choice with the same sample of
white noise versus different samples of white noise
showed that there is an induced white-noise component
proportional to the added external white noise, with the
random variability being the larger source of degradation.
Ahumada et al.*® used a temporal two-interval forced
choice in the presence of a complex background (airport
runway) and found that detection performance was the
same regardless of whether the samples of white noise in
the two intervals were the same or different. The appar-
ently higher level of internal noise in the results obtained
by Ahumada et al. should be, in part, a result of the back-
ground (airport runway) and, in part, a result of decision
variability, since Burgess presented the images simulta-
neously, while Ahumada et al. presented them sequen-
tially through time.

Our analysis cannot distinguish whether the white-
noise degradation is from the random variations in the
white noise or whether it is from an induced noise compo-
nent (contrast gain control). Future research could test
this hypothesis by comparing performance in a condition
in which the different locations have the same sample of
white noise plus the structured background with perfor-
mance in a condition in which the different locations have
different samples of white noise plus the structured back-
ground.

E. Impact on the Development of Computer Observer
Models for Automated Evaluation of Task-
Performance Medical Image Quality

Objective measures of medical image quality can be mea-
sured in terms of performance in tasks that are relevant
to visual clinical diagnosis.*® Evaluation of medical im-
age quality through psychophysical studies can be time
consuming. For optimization of image processing tech-
niques with a large number of parameters, psychophysi-
cal studies may simply not be feasible. One goal has
thus been to develop models that can accurately predict
human performance as a function of basic image proper-
ties such as signal contrast and image processing and ac-
quisition techniques. This model could potentially be
used for automated evaluation and optimization of image
quality.*®4” A number of linear models have been used
in recent years to predict human performance, including
the nonprewhitening matched filter and modified nonpre-
whitening matched filter, Hotelling, and channelized Ho-
telling models.10-1317:36-3847  The source of degradation
in these models is the random variation in the back-
grounds and the observer’s suboptimal processing of the
data. Possible limitations in the processing of the data
could be through an eye filter,'® a number of narrow-band
channels that reduce the effective information available
to the observer,?6-38 or an inability to use the noise en-
semble statistics to undo the correlations in the
noise.!%1113  None of these models includes a source of
performance degradation associated with a fixed back-
ground; they predict no performance degradation from
the uniform gray background condition to the repeated
background condition. However, our results show that
the deterministic background contributes approximately
as much to performance degradation as do the random
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variations in the complex background. Models developed
to predict human performance in visual detection in
medical image noise require a source of degradation from
a fixed deterministic background.

F. Assumptions, Limitations, and Future Directions
The main limitation in the current treatment is the as-
sumption that the observer uses the same effective filter
(fixed filter assumption) as a function of the relative
amounts of added white noise and structured background
(in both the same and different structured background
conditions). This assumption will produce the relation-
ship between d’ and the added-white-noise spectral noise
density implicit in Eqgs. (7) and (8). We have discussed
the possible violations of this assumption in Subsections
5.C-5.E for the cases of the same structured background
and the different structured background conditions. Fu-
ture research needs to rigorously test the fixed filter as-
sumption and investigate how operational models that
use a fixed filter (nonprewhitening and modified nonpre-
whitening matched filter) or an adaptive effective filter
(Hotelling, channelized Hotelling models) may account for
observer performance in structured backgrounds with dif-
ferent degrees of additive white noise.

6. CONCLUSIONS

We have investigated how two sources of performance
degradation in human visual signal detection (the pres-
ence of a deterministic high-contrast background and ran-
dom variations in the background) contribute to the de-
tection of a signal in a spatially varying complex
background (structured backgrounds). The performance
degradation caused by a fixed deterministic background
(contrast gain control) was approximately equal to that
caused by the random variations in the background.
Models for human visual detection in spatially varying
complex backgrounds require both a contrast gain control
mechanism and decision strategies that use prior knowl-
edge about the signal and/or background statistics.
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