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Abstract. In complex human-machine systems, the human operator is often 
required to intervene to detect and solve problems.  Given this increased 
reliance on the human in these critical human-machine systems, there is an 
increasing need to validly predict how operators allocate their visual attention.  
This paper describes the information-seeking (attention-guiding) model within 
the Man-machine Integration Design and Analysis System (MIDAS) v5 
software - a predictive model that uses the Salience, Effort, Expectancy and 
Value (SEEV) of an area of interest to guide a person’s attention. The paper 
highlights the differences between using a probabilistic fixation approach and 
the SEEV approach in MIDAS to drive attention.  
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1   Introduction 

There is a need for increased realism in human performance models (HPMs) of 
extreme and potentially hazardous environments. As the fidelity and realism of the 
HPMs improve, so too does the need for integrating and using complex human 
cognitive and attention models. HPMs exist that incorporate basic human vision and 
attention models to drive how and when a human will respond to events in specific 
environment contexts. Implementing these models computationally has typically 
taken the form of scripting a sequence of visual fixations points and some apply a 
probabilistic distribution [1,2]. Few, if any, HPM-attention models today operate in a 
closed-loop fashion using information from the environment to drive where the 
operator is going to look next. As automation and advanced technologies are 
introduced into current operational environments, there is an increasing need to 
validly predict how and when a human will detect environmental events. This paper 
summarizes the augmentations to the information-seeking (attention-guiding) model 
within the Man-machine Integration Design and Analysis System (MIDAS) v5 



software from a probabilistic approach to a predictive model that uses four parameters 
(Salience, Effort, Expectancy and Value; SEEV) to guide an operator’s attention [3]. 

1.1 Man-machine Integration Design and Analysis System (MIDAS) 

The Man-machine Integration Design and Analysis System (MIDAS) is a dynamic, 
integrated human performance modeling and simulation environment that facilitates 
the design, visualization, and computational evaluation of complex man-machine 
system concepts in simulated operational environments [4,5]. MIDAS combines 
graphical equipment prototyping, dynamic simulation, and human performance 
modeling to reduce design cycle time, support quantitative predictions of human-
system effectiveness, and improve the design of crew stations and their associated 
operating procedures. HPMs like MIDAS provide a flexible and economical way to 
manipulate aspects of the operator, automation, and task-environment for simulation 
analyses [4,5,6]. MIDAS can suggest the nature of likely pilot errors, as well as 
highlight precursor conditions to error such as high levels of memory demand, 
mounting time pressure and workload, attentional tunneling or distraction, and 
deteriorating situation awareness (SA).  
 
MIDAS links a virtual human, comprised of a physical anthropometric character, to a 
computational cognitive structure that represents human capabilities and limitations. 
The cognitive component is comprised of a perceptual mechanism (visual and 
auditory), memory (short term memory, long term working memory, and long term 
memory), a decision maker and a response selection architectural component. The 
complex interplay among bottom-up and top-down processes enables the emergence 
of unforeseen, and non-programmed behaviors [7].  
 
MIDAS is unique as it can be used as a cognitive modeling tool that allows the user to 
obtain both predictions and quantitative output measures of various elements of 
human performance, such as workload and SA, and as a tool for analyzing the 
effectiveness of crewstation designs from a human factors perspective [4].  This 
analysis can help point out fundamental design issues early in the design lifecycle, 
prior to the use of hardware simulators and human-in-the-loop experiments.  In both 
cases, MIDAS provides an easy to use and cost effective means to conduct 
experiments that explore "what-if" questions about domains of interest. MIDAS v5 
has a graphical user interface that does not require advanced programming skills to 
use.  Other features include dynamic visual representations of the simulation 
environment, support for multiple and interacting human operators, several HPM 
outputs (including timelines, task lists, workload, and SA), performance influencing 
factors (such as error predictive performance, fatigue and gravitational effects on 
performance), libraries of basic human operator procedures (how-to knowledge) and 
geometries for building scenarios graphically (that leverage heavily from Siemens' 
JackTM software) [8]. 1  

                                                             
1Additional MIDAS information in [4,5] and http://hsi.arc.nasa.gov/groups/midas/ 
TM JackTM is maintained by Siemens PLM Solutions  



1.2 MIDAS Attention and Perception Model 

MIDAS represents attention as a series of basic human primitive behaviors that carry 
with them an associated workload level determined from empirical research [9,10,11]. 
Actions are triggered by information that flows from the environment, through a 
perception model, to a selection-architecture (that includes a representation of human 
attention loads), to a task network representation of the procedures that then feeds 
back into the environment. Actions carried out by the MIDAS operator impact the 
performance of the model in a closed-loop fashion. 

MIDAS represents perception as a series of stages that information must pass 
through in order to be processed. The perception model includes visual and auditory 
information. Visual perception in MIDAS depends on two factors – the amount of 
time the observer dwells on an object and the perceptibility of the observed object.  
The perception model computes the perceptibility of each object that falls into the 
operator’s field of view based on properties of the observed object, the visual angle of 
the object and environmental factors. In the current implementation of MIDAS, 
perception is a three-stage, time-based perception model (undetected, detected, 
comprehended) for objects inside the workstation (e.g., an aircraft cockpit) and a four-
stage, time-based perception model (undetected, detected, recognized, identified) for 
objects outside the workstation (e.g., taxiway signs on an airport surface).  The model 
computes the upper level of detection (i.e., undetectable, detectable, recognizable, 
identifiable for external objects) that can be achieved by the average unaided eye if 
the observer dwells on it for a requisite amount of time. For example, in a low-
visibility environment, the presence of an aircraft on the airport surface may be 
‘detectable’ but the aircraft company logo on the tail might not be ‘recognizable’ or 
‘identifiable’ even if he/she dwells on it for a long time.  

1.3 MIDAS Probabilistic Scanning Model 

MIDAS uses a probabilistic scan pattern to drive the perception model. In the current 
version, probabilistic scan behaviors drive the eyeball towards a particular area of 
interest (AOI) based on a combination of the model analysts’ understanding of the 
operators scan pattern and the analysts’ selection of a statistical distribution of 
fixation times (i.e. gamma, lognormal, linear, etc) characteristic of the specific 
environmental context. This approach requires a known scan pattern (in many cases 
this requires access to eye-movement data from a human-in-the-loop simulation). 
Models that use probabilities to drive the scan behavior require extensive model 
development time in order to represent context. An aviation example from a recently 
completed MIDAS v5 model (for a scenario description see [12]) will illustrate the 
manner that the information is input into the MIDAS architecture. The modeled pilots 
scan the displays and out the windows according to a probability matrix, as presented 
in Table 1.  The probabilities were developed and verified by an experienced 
commercial pilot Subject Matter Expert (SME). The matrix assigns to the Captain 
(CA) and First Officer (FO) a probability of attending to information sources (shown 
in rows) for each of eight scenario contexts or phases of flight (shown in columns).  



Table 1. Visual fixation probability matrix in a model of pilot performance (see [12]) 

 
1.4 MIDAS Implementation of the Probability Matrix. 
Within the model, the probability of visual fixation (location) is context specific as 
illustrated in Fig. 1.  For example, during ‘after land checks’, the Captain is primarily 
scanning the electronic moving map (EMM) and out the window (OTW), while 
his/her secondary scanning is towards the Engine Indicating and Crew Alerting 
System (EICAS).  The First Officer (FO) is primarily scanning the EICAS and OTW.  
The Primary Flight Display (PFD) and EMM are secondary. Probabilities are defined 
in the node to the right of the high level task (e.g. “descent(1_68)”). 
 

 

Fig. 1. MIDAS implementation of the probabilistic scan pattern – P decision node (circled) 
is where the analyst enters the context-specific probabilistic values from probability matrix 
 

This probabilistic approach effectively drives attention when the scan behavior is 
known but is less suitable when an analyst is interested in predicting the scan pattern 
given the context of the information content in the modeled world. To address this 

Captain's fixation probabilities by context (phase of flight)

descent approach land rollout

exit  

runway

after land 

check taxi to gate

arrive at 

gate

Primary Flight Display 0.20 0.30 0.10 0.10

Nav Display/Elect Moving Map 0.20 0.30 0.10 0.20 0.20 0.30 0.10

left window 0.05 0.05 0.10 0.20 0.20 0.20 0.30

left-front window 0.05 0.10 0.90 0.50 0.20 0.20 0.20 0.30

right-front window 0.05 0.05 0.10 0.10 0.10 0.20 0.20 0.20

right window 0.05 0.10 0.10 0.10 0.10

Eng. Indicating & Crew Alerting System 0.10 0.05 0.10 0.10 0.05

Mode Control Panel 0.10 0.05 0.05

Jepp chart 0.10 0.10

Control Display Unit 0.10

Total 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

First Officer's fixation probabilities by context (phase of flight)

descent approach land rollout

exit  

runway

after land 

check taxi to gate

arrive at 

gate

Primary Flight Display 0.10 0.10 0.30 0.40 0.20 0.10

Nav Display/Elect Moving Map 0.20 0.10 0.20 0.20 0.20 0.10 0.25 0.10

left window 0.10 0.10 0.10 0.10 0.10 0.10

left-front window 0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.10

right-front window 0.10 0.10 0.10 0.10 0.20 0.20 0.20 0.30

right window 0.10 0.10 0.10 0.10 0.20 0.15 0.40

Eng. Indicating & Crew Alerting System 0.10 0.10 0.10 0.20 0.10 0.20 0.10

Mode Control Panel 0.05 0.10 0.10

Jepp chart 0.10 0.10

Control Display Unit 0.05 0.10

Total 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Context

Context

Displays

Displays



limitation and to improve the cross-domain generalizability of the MIDAS perception 
and attention model, MIDAS was augmented to include the validated Salience, Effort, 
Expectancy, Value (SEEV) model of visual attention [13] as will be described next.   

1.5 The Salience, Effort, Expectancy, Value (SEEV) Model 

The SEEV model began as a conceptual model to predict how visual attention is 
guided in dynamic large-scale environments [13]. SEEV estimates the probability of 
attending, P(AOI), to an AOI in visual space, as a linear weighted combination of four 
components (salience, effort, expectancy, and value) as per the following equation:  

 

P(AOI) = s*S –ef*EF + ex*EX + v*V. (1) 

 
Coefficients in the uppercase describe the properties of a display or environment, 

while those in lower case describe the weight assigned to those properties in the 
control of an operator’s attention [14]. Specifically, the allocation of attention in 
dynamic environments is driven by the bottom-up capture of Salient (S) events (e.g., a 
flashing warning on the instrument panel) and inhibited by the Effort (E) required to 
move attention (e.g., a pilot will be less likely to scan an instrument located at an 
overhead panel, head down, or to the side where head rotation is required, than to an 
instrument located directly ahead on a head-up display (HUD).  The SEEV model 
also predicts that attention is driven by the Expectancy (EX) of seeing a Valuable (V) 
event at certain locations in the environment.  

A computational version of this model drives the eyeballs around an environment, 
such as the dynamic cockpit, according to the four SEEV parameters. For example, 
the simulated eyeball following the model will fixate more frequently on areas with a 
high bandwidth (and hence a high expectancy for change), as well as areas that 
support high-value tasks, like maintaining stable flight [15].2 SEEV has been under 
development since 2001 and has been extensively validated with empirical human-in-
the-loop data from different domains [3,16].  

The integration of the SEEV model into MIDAS allows dynamic scanning 
behaviors by calculating the probability that the operator’s eye will move to a 
particular AOI given the tasks the operator is engaged in within the multitask context.  
It also better addresses allocation of attention in dynamic environments such as flight 
and driving tasks. A description of the implementation of the SEEV model into the 
MIDAS software follows. 

2 Augmenting the MIDAS Visual Scan Mechanism with SEEV  

In MIDAS, Effort, Expectancy, and Value are assigned values between 0 and 1, while 
Salience is left unconstrained.  As such, Effort, Expectancy, and Value drive the 

                                                             
2 The SEEV conceptual model has been refined to include a “to-be-noticed event” [15,16,17].  



human operator’s eye around the displays. However, if a salient event occurs, then 
P(AOI) may be offset by the display exhibiting the salient event until the display 
location of the salient event has been fixated and detected. In order to integrate SEEV 
into MIDAS, provisions were made for the analysts to estimate values for each of the 
four parameters. Each will be discussed in turn. 
Salience. In MIDAS, salience is associated with an event, not a display or object. 

An example of salience could be a proximity indicator on the navigation display that 
flashes when another aircraft comes too close. That is, for example, a cockpit display 
becomes salient when it is presenting an alert, but otherwise, is not salient. In 
addition, salience could include the loudness of an utterance (but not the content), the 
flash rate of an alert, and the color of an indicator (i.e., red to indicate a failure). In 
MIDAS, the time between the onset of the salient event and the time at which 
perception exceeds “Undetected” is reported [15,16,17]. 

The analyst must assess the salience of an event and provide a weight from 1 to 4.  
To aid this process, and in an attempt to establish a consistent set of rules to be 
applied across models, simple heuristics were developed: 1 = change with no 
luminance increase, 2 = change with luminance increase, 3 = change in position and 
luminance increase, 4 = repeated onsets (flashing).  Fig. 2 below shows how an 
analyst sets the salience of an event in the MIDAS software.  
 

 
Fig. 2. Salience heuristics are provided to guide model development 

 
Effort. Effort refers to the work that is required to sample the information 

(distance to the AOI). Effort is the only inhibitory factor in the SEEV equation and 
impacts the likelihood of traveling from one AOI to another.  Since MIDAS knows 
the location of all displays and objects in the environment, the model can calculate 
Effort empirically.  In MIDAS, an Effort rating between 0 and 1 is calculated for each 
AOI relative to the currently fixated AOI and is based on the angular difference.  Any 
AOI that is 90 degrees or more from the current AOI is set to the maximum (1.0).  
The visual angle to any AOI that is less than 90 degrees is divided by 90 degrees. 

 



Expectancy. Expectancy, also called bandwidth, is described as the event 
frequency along a channel (location). This parameter is based on the assumption that 
if a channel has a high event rate, people will sample this channel more frequently 
than if the event rate is lower [14]. An example is the frequent oscillation of attitude 
of a light plane when encountering turbulence.  The pilot expects the horizon line on 
the attitude indicator to change frequently and therefore monitors it closely.  In 
contrast, the pilot expects the altimeter during a controlled descent to descend at a 
constant rate and therefore has a low expectation of seeing changes in descent rate.  
Thus, when the rate of change is constant, the bandwidth is zero.  In SEEV 
applications, bandwidth (event rate) is always used as a proxy for expectancy.  In 
MIDAS, Expectancy is implemented as a SEEV primitive (Fig. 3).  Different 
expectancy values on a given display can be set for each context, procedure and 
operator. The context of events that precede the onset of a given signal will influence 
the likelihood that operators will bring their attention into the areas that are 
infrequently sampled.  

Expectancy for each AOI is set by the user to ‘none’, ‘low’, ‘moderate’ or ‘high’.  
When used in the SEEV equation, Expectancy is converted to 0, .333, .666 and 1.0 
respectively. Drilling down on the SEEV Expectancy primitive in the task network 
reveals the setting as shown in Fig. 3. 

 
Fig. 3. An example of setting expectancy for First Officer 

Value.  The level of Value denotes the importance of attending to an event or task 
or the cost of missing it. For example, information that is used to prevent stalling the 
aircraft (airspeed, attitude, angle-of-attack), is clearly more important than 
navigational information, such as waypoint location.  The sum of the product of the 
task value and the relevance of each display to the task is used to compute the value 
(importance) of the display [14] as illustrated in Table 2. Before the SEEV calculation 



is run, the task set importance is normalized between 0 and 1 (as shown by the values 
in Table 2) by computing the sum of all the importance values and then dividing each 
importance by the sum. It can be seen that an increased weight is given to the front 
window when avoiding collision relative to maintaining speed and heading. 
 

Table 2. Task value computation to determine display importance per context 
  Importance of AOI to task 
Task Task 

Value 
Front Window Left Window Near PFD Near ND 

Avoid 
collision 

.8 .6 .4 0 0 

Maintain 
speed/ 
heading 

.2 .1 .1 .4 .4 

Value of AOI =(.8*.6)+(.2*.1) 
=.5 

=(.8*.4)+(.2*.1) 
=.34 

=(.8*.0)+(.2*.4) 
=.08 

=(.8*.0)+(.2*.4) 
=.08 

 
In MIDAS, Value is implemented using SEEV primitives in order to bracket sets 

of primitives belonging to the most relevant task. The SEEV calculation considers all 
tasks that are active until they are explicitly ended by a SEEV end task primitive. For 
each task, an overall importance is set by the user. The user can indicate a relevance 
of none, low, moderate and high for each AOI.  Just as with Expectancy, these are 
converted to 0, .333, .666, and 1.  In addition, the user can specify none, low, 
moderate and high importance rating for the entire task. In Fig. 4, monitoring out the 
window (Front Right Window) is of high importance to the task bracketed by the 
“Monitoring OTW during land – FO” task set.   

 

 
Fig. 4. Example of assigning the value of AOIs to a task 



Discussion 

Few computational models operate in a closed-loop manner when it comes to seeking 
information within the environmental context.  For a HPM to produce valid output, it 
must accurately model visual attention. Two attention-guiding mechanisms within 
MIDAS were presented:  Probabilistic fixations and the SEEV approach. Probabilistic 
scan behaviors drive the eyeball towards a particular AOI based on a known scan 
pattern and a statistical distribution of fixation times. Models that use probabilities to 
drive the scan behavior are suitable if the analyst wants to replicate a known scan 
pattern but are less suitable when an analyst is interested in predicting the scan pattern 
given the context of information in the environment. Further, the probabilistic 
approach is often limited in that it does not consider dynamic changes to the 
environment and to the task.  The SEEV method overcomes those limitations by 
breaking down relevant flight deck display features to four parameters (Salience, 
Effort, Expectancy, and Value). This approach to modeling attention is more 
consistent with actual human behavior and has previously been validated with 
empirical human-in-the-loop data (see [14,16]). The SEEV model is also less prone to 
error introduced by the modeler/analyst, as it does not require adjustment of fixation 
probabilities each time the task or environment is changed, as the probabilistic 
method does.  

Conclusion 

Incorrectly defining visual scanning behavior and the manner that humans seek 
information when interacting in a system context can result in devastating outcomes 
and system inefficiencies if model results are to be relied upon for system design and 
evaluation purposes. The improved predictive capability of information-seeking 
behavior that resulted from the implementation of the validated SEEV model leaves 
MIDAS better suited to predict performance in complex human-machine systems.  
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