


ISIS Vibration Test Facility

Objective

- 1. Assess impact of flight-like whole-body vibration on human operational capabilities and ability to maintain situation awareness of vehicle operational state.
- 2. Quantify vibration effects on the usability of different forms of candidate next-generation cockpit display format symbology such as text, vehicle position, and vehicle attitude display indicators.
- 3. Develop advanced tools and methodologies to support testing by verification and testing by analysis

The ISIS Vibration Test Facility incorporates state-of-the-art vibration generation and measurement hardware and software into a part-task Crew Exploration Vehicle ascent/entry simulation environment. Researchers conduct part-task simulations of Orion ascents and analyze operator performance while experiencing whole-body vibration

Impact

Our findings assist the spacecraft development community in the design, test, evaluation, and validation of operational concepts and supporting user interfaces for next-generation crewed vehicles. In addition, our results assist the human performance modeling community to develop modeling tools with increased ability to emulate complex stochastic behaviors such as scan patterns and fixation durations. The net result will be safer and more efficient spacecraft operations.

Point of Contact: Bernard Adelstein, Ph.D., Bernard.D.Adelstein@ nasa.gov

http://humansystems.arc.nasa.gov/groups/isis

Last updated on June 8, 2009

NASA Ames Research Center- California, USA

